FINAL REPORT

to

THE FLORIDA DEPARTMENT OF TRANSPORTATION RESEARCH OFFICE

on Project
"Development and Calibration of Highway Safety Manual Equations for Florida Conditions"

FDOT Contract BDK77 977-06 (UF Project 00082013)

November 30, 2011
Transportation Research Center
The University of Florida

DISCLAIMER

The opinions, findings, and conclusions expressed in this publication are those of the authors and not necessarily those of the State of Florida Department of Transportation.

METRIC CONVERSION CHART

U.S. UNITS TO METRIC (SI) UNITS				
LENGTH				
SYMBOL	WHEN YOU KNOW	MULTIPLY BY	TO FIND	SYMBOL
in	inches	25.4	millimeters	mm
ft	feet	0.305	meters	m
yd	yards	0.914	meters	m
mi	miles	1.61	kilometers	km
METRIC (SI) UNITS TO U.S. UNITS				
LENGTH				
SYMBOL	WHEN YOU KNOW	MULTIPLY BY	TO FIND	SYMBOL
mm	millimeters	0.039	inches	in
m	meters	3.28	feet	ft
m	meters	1.09	yards	yd
km	kilometers	0.621	miles	mi

Technical Report Documentation Page

ACKNOWLEDGMENTS

The authors would like to express their sincere appreciation to Mr. Frank T. Sullivan of the Roadway Design Office of Florida Department of Transportation (FDOT) for his guidance and support provided throughout the project.

The authors would also like to thank the following people for providing critical data and technical feedback on the calibration efforts: Jim Mills, Joe Santos, Benjamin Jacobs, Tina Hatcher (all from FDOT), and Dr. Albert Gan

EXECUTIVE SUMMARY

The Highway Safety Manual (HSM) provides statistically-valid analytical tools and techniques for quantifying the potential effects on crashes as a result of decisions made in planning, design, operations, and maintenance. The HSM tools and techniques provide reliable estimates of expected crash rates for specific roadway segments and intersections.
Implementation of the new techniques in the HSM will upgrade FDOT's safety analysis methods from descriptive methods to quantitative, predictive analyses.

The base models for the HSM safety prediction methodologies were developed with data from specific highway agencies from different parts of the country. To apply these models to geographic regions in Florida and to account for changes in crash trends over time within the same geographic region, calibrations of these base models is required.

This study provides these calibration factors the segment- and intersection- level safety performance functions from the HSM for Florida conditions or the years 2005 through 2008. Tables E1 and E2 present a summary of these calibration factors by year and by facility type for the segment and intersection SPFs.

Table E1. Calibration Factors for Segment SPFs

Calibration Factor Time Frame		Calibration Factors by Facility Type						
		Rural Two- Lane Two-Way Roads	Rural Multilane Highways	Urban and Suburban Arterials				
		R2U	R4D	U2U	U32LT	U4U	U4D	U52LT
HSM SPF to be Calibrated		$\begin{aligned} & \text { Eq. 10-6 } \\ & \text { Page } 10-15 \end{aligned}$	$\begin{aligned} & \text { Eq. 11-9 } \\ & \text { Page 11-18 } \end{aligned}$	$\begin{gathered} \text { Eq. } 12-10, \\ 12-13,12- \\ 16,12-19, \\ \& 12-20 \end{gathered}$	$\begin{gathered} \hline \text { Eq. 12-10, } \\ 12-13,12- \\ 16,12-19, \\ \& 12-20 \end{gathered}$	$\begin{gathered} \text { Eq. } 12-10, \\ 12-13,12- \\ 16,12-19, \\ \& 12-20 \end{gathered}$	$\begin{gathered} \text { Eq. 12-10, } \\ 12-13,12- \\ 16,12-19, \\ \& 12-20 \end{gathered}$	$\begin{gathered} \text { Eq. 12-10, } \\ 12-13,12- \\ 16,12-19, \\ \& 12-20 \end{gathered}$
Total Length of Roadway		2121.0	546.2	628.4	66.3	96.1	970.6	253.6
Average KABC Crashes/Year		947.8	576.5	924.0	122.3	329.5	2885.0	1005.3
Fatal and Injury Crashes (KABC)	2005	1.063	0.719	1.093	0.952	0.641	1.750	0.710
	2006	1.069	0.696	0.977	1.126	0.742	1.611	0.726
	2007	1.026	0.701	1.119	1.028	0.749	1.653	0.711
	2008	0.980	0.665	0.928	1.046	0.707	1.602	0.695
Fatal and Injury Crashes $(\mathrm{KAB})^{a}$	2005	1.353	0.769					
	2006	1.372	0.752					
	2007	1.241	0.740					
	2008	1.217	0.688					

a: using the KABCO scale, these include only KAB crashes; crashes with severity level C (possible injury) are not included

Table E2. Calibration Factors for Intersection SPFs

Calibration Factor Time Frame		Calibration Factors by Facility Type					
		Rural Two-Lane Two-Way Roads			Rural Multilane Highways	Urban and Suburban Arterials	
		R2 3ST	R2 4ST	R2 4SG	RM 4SG	U 3SG	U 4SG
HSM SPF to be Calibrated		$\begin{gathered} \text { Eq. } 10-8 \\ \text { Page } 10-18 \end{gathered}$	Eq. 10-9 Page 10-19	$\begin{aligned} & \text { Eq. } 10-10 \\ & \text { Page } 10-20 \end{aligned}$	$\begin{aligned} & \text { Eq. } 10-11 \\ & \text { Eq. } 10-12 \\ & \text { Page } 11-21 \end{aligned}$	$\begin{gathered} \text { Eq. 12-21, } \\ 12-24,12- \\ 29, \& 12-31 \end{gathered}$	$\begin{aligned} & \text { Eq. 12-21, } \\ & 12-24,12- \\ & 29, \& 12-31 \end{aligned}$
Number of Intersections Used for Calibration		39	24	28	25	45	121
Average KABC Crashes/Year		26.8	21.6	43.8	48.2	107.4	736.8
Fatal and Injury Crashes KABC	2005	0.79	0.72	1.28	0.35	1.98	2.05
	2006	0.80	0.66	1.44	0.36	1.90	1.91
	2007	0.72	0.47	0.89	0.44	2.10	1.82
	2008	0.65	0.47	1.00	0.34	1.87	1.79
	2009	0.80	0.80	1.21	0.37	1.41	1.84
Fatal and Injury Crashes $K_{A B}{ }^{\text {a }}$	2005	1.06	1.00	2.02	0.47		
	2006	1.05	0.89	1.91	0.54		
	2007	0.84	0.68	1.22	0.57		
	2008	0.58	0.54	1.40	0.40		
	2009	0.75	1.21	1.96	0.50		

The calibration factors provided in this report are to be used along with the appropriate SPFs for project-level safety analyses conducted in the state of Florida. Specifically, the expected crashes predicted by the SPF equations in the HSM are to be scaled by the appropriate calibration factors (and other crash modification factors as needed). The overall methodology is outlined in Part C of the HSM.

It is also useful to acknowledge that the intersection equations were calibrated using relatively smaller sample sizes and so caution must be administered in using these factors.

For segment-level analysis, district-level or population-group-level calibration factors may be used instead of the state-level factors if the localized factors were derived using adequate data. Similarly, population-group level calibration factors would also be more appropriate for segments in high-density urban counties as the state-wide factors are shown to underestimate the crash rates in these locations.

TABLE OF CONTENTS

Disclaimer ii
Metric Conversion Chart iii
Acknowledgments V
Executive Summary vi
List of Figures
List of Tables xi
Chapter 1 Introduction 1
Chapter 2 Calibration of Segment SPFs 3
2.1 List of Segment SPFs 3
2.2 Site Selection and Data Assembly 7
2.3 Segment Calibration Results 11
2.4 Sensitivity Analysis 13
2.5 Calibration Benefit 14
2.6 Geographic Segmentation 16
2.6.1 Segmentation by FDOT Districts 17
2.6.2 Segmentation by County Population Density 18
2.7 Florida-Specific SPFs 20
Chapter 3 Calibration of Intersection SPFs 23
3.1 List of Intersection SPFs 23
3.2 Site Selection and Data Assembly 26
3.3 Intersection Calibration Results 28
Chapter 4 Summary and Conclusions 30
References 33
Appendix A: Procedure for Creation of Homogeneous Segments 35
Appendix B: Florida-Specific Crash Distributions 51
Appendix C: Florida Bike Lane Calibration 54
Appendix D: Sensitivity Analysis Tables 55
Appendix E: Geographic Segmentation 58
Appendix F: Intersection Locations 61
Appendix G: Extraction of Intersection Attributes from Google Maps 81

LIST OF FIGURES

Figure 2.1 Creation of Homogeneous Segments from the Florida RCI

LIST OF TABLES

Table 2.1 Rural HSM Segment SPFs by Facility Type and Severity Level 4
Table 2.2 Urban and Suburban HSM Segment SPFs for Total Crashes 5
Table 2.3 Urban and Suburban HSM Segment SPFs for Fatal and Injury Crashes 6
Table 2.4 RCI Percent Share by Section Status 7
Table 2.5 Segment Data Elements Used in the Development of Florida Calibration Factors 8
Table 2.6 RCI Variable Names Associated with HSM Required Roadway Characteristics. 9
Table 2.7 Description of Segment Facility Types in Florida. 11
Table 2.8 Florida Segment Calibration Factors for Fatal and Injury Prediction Models 12
Table 2.9 Comparison of Calibration Factors Using HSM and Florida Collision Type Distributions 13
Table 2.10 Difference in Crashes per Mile by Varying Assumptions 14
Table 2.11 Base SPF versus Calibrated SPF Comparisons for 2008 Segment Crash Predictions 16
Table 2.12 Base SPF versus Calibrated SPF Comparisons for 2006 Segment Crash Predictions 16
Table 2.13 Lengths of Facility Type by District 17
Table 2.14 Rural Two-Lane KABC District-Calibration 18
Table 2.15 Urban Multilane Divided KABC District-Calibration 18
Table 2.16 Lengths of Facility Type by Population Density Group Number. 19
Table 2.17 Rural 2 Lane KABC Population Density-Calibration 19
Table 2.18 Urban 4 Lane Divided KABC Population Density-Calibration 20
Table 2.19 Florida and HSM Model Coefficients for Fatal and Injury (KABC) Crashes 21
Table 2.20 Florida SPF and Calibrated HSM SPF Error Statistics 22
Table 3.1 Rural HSM Intersection SPFs by Facility Type and Severity Level 24
Table 3.2 Urban and Suburban HSM Intersection SPFs for Total Crashes 25
Table 3.3 Urban and Suburban HSM Intersection SPFs for Fatal and Injury Crashes 26
Table 3.4 Intersection Data Elements Used in the Development of Florida Calibration Factors 27
Table 3.5 Description of Segment Facility Types in Florida. 28
Table 3.6 Intersection Calibration Results 29

CHAPTER 1 INTRODUCTION

The Highway Safety Manual (HSM), published by the American Association of State Highway and Transportation Officials (AASHTO), provides a set of tools and methodologies to give quantitative safety performance information for decision making (1). Part C of the HSM presents crash prediction methods to estimate the expected crash frequency at any roadway segment or intersection. These methods include safety performance functions (SPF), crash modification factors (CMF), and calibration factors (C).

SPFs are crash prediction equations (negative binomial regression models) that primarily relate crash frequencies to traffic volumes and are derived under "base" conditions for each roadway segment or intersection type. Base conditions include geometric attributes, such as lane width (base is 12 feet for rural segments) and skew angle (base is no skew angle for all intersections), road features such as lighting (base is unlit for all segments and intersections) and right-turn-on-red (base is permitted for urban signalized intersections), and geographic factors, such as grade (base is level for rural two-lane, two-way segments).

The crash frequency estimated at a given site (segment or intersection) using the SPF is then modified through the use of CMFs to account for differences between the base conditions and the conditions of the site being analyzed. If a feature of a site matches the base condition, the corresponding CMF is 1.0 . If a site's characteristics offer an expected decrease in crashes, such as lighting (base condition is unlit), then the CMF would be less than 1.0. Conversely, if a site's features would result in an expected increase in crashes, such as the presence of on-street parking (base condition is no on-street parking), the CMF would be greater than 1.0.

The final adjustment made to the estimated crash frequency in the HSM crash prediction method is the application of the calibration factor, C. The calibration factor facilitates the transferability of the SPF from the data set from which it was developed to the local analysis area. While CMFs account for changes of specific roadway features from the base conditions of the SPF, the calibration factor accounts for any attributes that may cause a facility-wide difference in the level of crash frequency. Factors contributing to such differences include crash reporting thresholds, driver population, weather, animal populations, and other unforeseen elements.

The HSM provides the SPFs for several facility types and the CMFs for several roadway features and other attributes (1). The HSM also prescribes that the SPFs be calibrated to local conditions prior to applications for safety assessments. This calibration procedure is briefly outlined here.

Using the appropriate SPF from the HSM, estimate the crash frequency for each segment assuming base conditions, $N_{s p f}$. Since segment SPFs typically have a negative-binomial structure, this step involves the calculation of the type:

$$
\begin{equation*}
N_{\text {spf }}=\exp (a+b \times \ln (A A D T)+\ln (\text { Length })) \tag{Equation 1.1}
\end{equation*}
$$

where a and b are regression coefficients available from the HSM, AADT is the annual average daily traffic volume on the segment, and Length is the length of the segment. The structure for intersection SPFs is similar as they generally follow the form:

$$
\begin{equation*}
N_{\text {spf }}=\exp \left(a+b \times \ln \left(A A D T_{\text {maj }}\right)+c \times \ln \left(A A D T_{\text {min }}\right)\right) \tag{Equation 1.2}
\end{equation*}
$$

where a, b, and c are regression coefficients given by the HSM, $A A D T_{\text {maj }}$ is larger of the annual average daily traffic volumes of the two intersecting roads, and $A A D T_{\text {min }}$ is the smaller of the two annual average daily traffic volumes.

Next, the CMFs are determined for each site to adjust for any deviations of site characteristics from the base conditions. These CMF values may be directly used from the HSM or derived using local data. It is also useful to note that, in some cases, CMF values depend on the facility-specific crash type distribution. For example, the CMF for lane width applies to run-off-the-road, head-on, and sideswipe crashes. Therefore, calculating this CMF requires data on the proportion of these specific crash types for the given facility. Data on "default" crash-type distributions may be used from the HSM, or this may be substituted for with locally-derived information. Once all the CMFs have been calculated, the estimated crash frequency for a given site can be determined as
$N_{\text {predicted(uncalibrated) }}=N_{\text {spf }} \times\left(C M F_{1} \times C M F_{2} \times \ldots \times C M F_{y}\right)$
Equation 1.3
where $C M F_{y}$ are the CMFs for the different segment attributes (such as lane width, and lighting).

After calculating the $N_{\text {predicted(uncalibrated) }}$ for each site in the calibration data set, the calibration factor, C is computed as the ratio of observed crashes across all chosen sites to the number of uncalibrated predicted crashes for the same selected sites during the same time period:

$$
C=\frac{\sum_{\text {all selected sites }} \text { observed crashes }}{\sum_{\text {all selected sites }} N_{\text {predicted(uncalibrated) }}}
$$

Equation 1.4

The broad intent of this study is to develop the calibration factors for the segment- and intersection- level safety performance functions from the HSM for Florida conditions using the procedure described above.

It is useful to note that there is little documented empirical evidence on the calibration of HSM equations to specific jurisdictions. Arguably one of the main reasons is that the manual itself is very recent. Three major calibration studies are the efforts undertaken at Oregon State University, the University of Louisiana at Lafayette, and Brigham Young University (2, 3, 4). The most comprehensive of these three is the Oregon State University work, calibrating the HSM predictive models for Oregon (2). In the Oregon study, both segment and intersection SPFs for total crashes were calibrated, and the resulting calibration factors were found to be very low for most cases; this was attributed to the fact that Oregon relies on self-reporting for property damage only (PDO) crashes. Additionally, state-specific collision type distributions were examined, but found to not have an effect in Oregon. Finally, fatal and injury calibrations were investigated and recommended for use in safety analysis due to the low reporting of PDO crashes. In the study performed by the University of Louisiana at Lafayette, calibration factors were developed only for rural multilane highways in Louisiana (3). Performance measures for network screening were also addressed; however, uncalibrated crash prediction models were not part of the comparison. In the Brigham Young University research, the HSM was calibrated for rural two-lane, two-way roadway segments in Utah (4). The calibrated HSM SPFs were compared to new models developed for Utah, but the existing HSM SPFs without calibration were not evaluated.

The rest of this report is organized as follows. Chapter 2 focuses on the calibration of segment level SPFs. Chapter 3 focuses on the calibration of intersection level SPFs. In each of Chapters 2 and 3, the assembly of data required for calibrations and the calibration results are discussed in detail. Finally, Chapter 4 presents an overall summary of work and identifies the major conclusions. Supplemental material are provided in Appendices.

CHAPTER 2 CALIBRATION OF SEGMENT SPFS

This chapter describes the calibration of the segment SPFs for Florida Conditions. The segment level SPFs presented in the HSM are first listed and those calibrated in this study are identified (Section 2.1). Next, in Section 2.2, the site selection and data assembly procedure is discussed extensively. Section 2.3 gives the segment calibration results, and discusses the use of Floridaspecific crash distributions compared to HSM crash distributions. The impacts of the assumptions made in order to carry out the segment calibration are examined in Section 2.4. Section 2.5 presents a comparison of the HSM crash estimation procedure for segments under calibrated and non-calibrated conditions in order to evaluate the benefits of calibration. Section 2.6 examines geographic segmentation in calibration, both by FDOT district division (Section 2.6.1) and by county level population density (Section 2.6.2). Finally, in Section 2.7, SPFs for two facility types are completely re-estimated using Florida data and these are compared to the corresponding calibrated HSM equations.

2.1 List of Segment SPFs

The HSM currently provides segment-level SPFs for three rural roadway types and five urban and suburban roadway types. The rural roadway types are: (1) Two-lane two-way undivided roads (R2U), (2) Four-lane undivided roads (R4U), and (3) Four-lane divided roads (R4D). The urban/suburban roadway types are: (1) Two-lane undivided segments (U2U), (2) Three-lane segments including a two-way left-turn lane (U32LT), (3) Four-lane undivided segments (U4U), (4) Four-lane divided segments (U4D), and (5) Five-lane segments including a two-way left-turn lane (U52LT). Each of the eight segment types has its own SPF, requiring an associated calibration factor to adjust the corresponding model to local conditions. Separate SPFs are generally provided for analyzing total crashes (includes crashes with property damage only) and only fatal and injury crashes.

Table 2.1 lists all the segment SPFs for rural facilities included in the HSM and identifies whether these are calibrated in this effort. The SPFs for total crashes were not calibrated as all property damage only (PDO) crashes are not fully recorded by the long-form crash reports used to populate Florida's Crash Analysis Reporting (CAR) System. The equations for fatal and injury crashes were not calibrated for multilane undivided rural segments due to lack of adequate data.

Table 2.1 Rural HSM Segment SPFs by Facility Type and Severity Level

Facility Type	SPF	Calibrated for Florida
Total Crashes		
Two-Lane Two-Way	$N_{\text {Total }}=A A D T \times L \times 365 \times 10^{-6} \times \mathrm{e}^{(-0.312)}$	No ${ }^{\text {c }}$
Multilane Undivided	$N_{\text {Total }}=\mathrm{e}^{(-9.653)} \times A A D T^{1.176} \times \mathrm{L}$	No ${ }^{\text {c }}$
Multilane Divided	$N_{\text {Total }}=\mathrm{e}^{(-9.025)} \times A A D T^{1.049} \times \mathrm{L}$	No ${ }^{\text {c }}$
KABC Fatal and Injury Crashes ${ }^{\text {a }}$		
Two-Lane Two-Way	$N_{\text {KABC }}=N_{\text {Total }} \times 0.321$	Yes
Multilane Undivided	$N_{\text {KABC }}=\mathrm{e}^{(-9.410)} \times A A D T^{1.094} \times L$	No ${ }^{\text {d }}$
Multilane Divided	$N_{\text {KABC }}=\mathrm{e}^{(-8.837)} \times A A D T^{0.958} \times L$	Yes
KAB Fatal and Injury Crashes ${ }^{\text {b }}$		
Two-Lane Two-Way	$\mathrm{N}_{\mathrm{KAB}}=\mathrm{N}_{\text {Total }} \times 0.176$	Yes
Multilane Undivided	$N_{\text {KAB }}=\mathrm{e}^{(-8.577)} \times$ AADT ${ }^{0.938} \times L$	No ${ }^{\text {d }}$
Multilane Divided	$N_{\text {KAB }}=\mathrm{e}^{(-8.505)} \times A A D T^{0.874} \times L$	Yes

a: These include crashes with fatalities, incapacitating injuries, non-incapacitating injuries, and possible injuries.
b : These include crashes with fatalities, incapacitating injuries, and non-incapacitating injuries.
c: Not calibrated due to lack of complete PDO crash data in Florida.
d: Not calibrated due to insufficient mileage of this facility type in Florida.
Table 2.2 and Table 2.3 display the components of the HSM segment SPFs for the five urban and suburban arterial facility types. These urban and suburban arterial SPFs are each composed of five equations to estimate different types of crashes: (1) multiple-vehicle nondriveway, (2) single-vehicle, (3) multiple-vehicle driveway related, (4) vehicle-pedestrian, and (5) vehicle-bicycle. While each of these five equations is not calibrated individually, the sum of these five components forms the urban and suburban SPF which is calibrated to Florida conditions. The SPFs for total crashes given in Table 2.2 were not calibrated for the same reason that the total crash SPFs in Table 2.1 were not able to be calibrated: all property damage only (PDO) crashes are not fully recorded by the long-form crash reports used to populate Florida's Crash Analysis Reporting (CAR) System. Calibration was performed on the SPFs for the five facility types shown in Table 2.3.

Table 2.2 Urban and Suburban HSM Segment SPFs for Total Crashes

SPF Component by Facility Type	SPF
Two-Lane Undivided	
Multiple-Vehicle Nondriveway	$N_{\text {Total, MV-ND }}=\mathrm{e}^{(-15.22)} \times A A D T^{1.68} \times L$
Single-Vehicle	
Multiple-Vehicle Driveway-Related	$N_{\text {Total, MV-D }}=n_{\text {driveways }} \times 0.075 \times(A A D T / 15,000)^{1.000}$
Vehicle-Pedestrian	$N_{\text {Ped }}=\Sigma N_{\text {Total }} \times$ CMFs \times PedFactor ${ }_{\text {Table } 12.8}$
Vehicle-Bicycle	$N_{\text {Bike }}=\Sigma N_{\text {Toatal }} \times$ CMFs \times BikeFactor $_{\text {Table 12.9 }}$
Three-Lane (Including center TWLTL)	
Multiple-Vehicle Nondriveway	$N_{\text {Total, MV-ND }}=\mathrm{e}^{(-12.40)} \times A A D T^{1.41} \times L$
Single-Vehicle	
Multiple-Vehicle Driveway-Related	$N_{\text {Total, MV-D }}=n_{\text {driveways }} \times 0.048 \times(\text { AADT/ } 15,000)^{1.000}$
Vehicle-Pedestrian	$N_{\text {Ped }}=\Sigma N_{\text {Total }} \times$ CMFs \times PedFactor ${ }_{\text {Table } 12.8}$
Vehicle-Bicycle	$N_{\text {Bike }}=\Sigma N_{\text {Total }} \times$ CMFs \times BikeFactor $_{\text {Table 12.9 }}$
Multilane Undivided	
Multiple-Vehicle Nondriveway	$N_{\text {Total, MV-ND }}=\mathrm{e}^{(-11.63)} \times A A D T^{1.33} \times L$
Single-Vehicle	$N_{\text {Total, }{ }^{\text {SV }}}=\mathrm{e}^{(-7.99)} \times A A D T^{0.81} \times L$
Multiple-Vehicle Driveway-Related	$N_{\text {Total, } \text {, MV-D }}=n_{\text {driveways }} \times 0.087 \times(A A D T / 15,000)^{1.172}$
Vehicle-Pedestrian	$N_{\text {Ped }}=\Sigma N_{\text {Total }} \times$ CMFs \times PedFactor ${ }_{\text {Table 12.8 }}$
Vehicle-Bicycle	$N_{\text {Bike }}=\Sigma N_{\text {Total }} \times$ CMFs \times BikeFactor $_{\text {Table 12.9 }}$
Multilane Divided	
Multiple-Vehicle Nondriveway	$N_{\text {Total, }, \text { VV-ND }}=\mathrm{e}^{(-12.34)} \times A A D T^{1.36} \times L$
Single-Vehicle	$N_{\text {Total, } \text { SV }}=\mathrm{e}^{(-5.05)} \times A A D T^{0.47} \times L$
Multiple-Vehicle Driveway-Related	$N_{\text {Total, MV-D }}=n_{\text {driveways }} \times 0.016 \times(\text { AADT/ } 15,000)^{1.106}$
Vehicle-Pedestrian	$N_{\text {Ped }}=\Sigma N_{\text {Total }} \times$ CMFs \times PedFactor ${ }_{\text {Table 12.8 }}$
Vehicle-Bicycle	$N_{\text {Bike }}=\Sigma N_{\text {Total }} \times$ CMFs \times BikeFactor $_{\text {Table12.9 }}$
Five-Lane (Including center TWLTL)	
Multiple-Vehicle Nondriveway	$N_{\text {Total, } \text {, MV-ND }}=\mathrm{e}^{(-9.70)} \times A A D T^{1.17} \times L$
Single-Vehicle	
Multiple-Vehicle Driveway-Related	$N_{\text {Total, MV-D }}=n_{\text {driveways }} \times 0.079 \times(A A D T / 15,000)^{1.172}$
Vehicle-Pedestrian	$N_{\text {Ped }}=\Sigma N_{\text {Total }} \times$ CMFs \times PedFactor ${ }_{\text {Table } 12.8}$
Vehicle-Bicycle	$N_{\text {Bike }}=\Sigma N_{\text {Total }} \times$ CMFs \times BikeFactor $_{\text {Table 12.9 }}$

Table 2.3 Urban and Suburban HSM Segment SPFs for Fatal and Injury Crashes

SPF Component by Facility Type	SPF
Two-Lane Undivided	
Multiple-Vehicle Nondriveway	$N_{\text {KABC, } M V-N D}=\mathrm{e}^{(-16.22)} \times A A D T^{1.66} \times L$
Single-Vehicle	$N_{\text {KABC, } S V}=\mathrm{e}^{(-3.96)} \times A A D T^{0.23} \times L$
Multiple-Vehicle Driveway-Related	$N_{\text {KABC, MV-D }}=N_{\text {Total, MV-D }} \times 0.323$
Vehicle-Pedestrian	$N_{\text {Ped }}=\Sigma N_{\text {Total }} \times$ CMFs \times PedFactor $_{\text {Table12.8 }}$
Vehicle-Bicycle	$N_{\text {Bike }}=\Sigma N_{\text {Total }} \times$ CMFs \times BikeFactor $_{\text {Table12.9 }}$
Three-Lane (Including center TWLTL)	
Multiple-Vehicle Nondriveway	$N_{\text {KABC, MV-ND }}=\mathrm{e}^{(-16.45)} \times A A D T^{1.69} \times L$
Single-Vehicle	$N_{\text {KABC, } S V}=\mathrm{e}^{(-6.37)} \times A A D T^{0.47} \times L$
Multiple-Vehicle Driveway-Related	$N_{\text {KABC, MV-D }}=N_{\text {Total, MV-D }} \times 0.243$
Vehicle-Pedestrian	$N_{\text {Ped }}=\Sigma N_{\text {Total }} \times$ CMFs \times PedFactor $_{\text {Table12.8 }}$
Vehicle-Bicycle	$N_{\text {Bike }}=\Sigma N_{\text {Total }} \times$ CMFs \times BikeFactor $_{\text {Table12.9 }}$
Multilane Undivided	
Multiple-Vehicle Nondriveway	$N_{K A B C, M V-N D}=\mathrm{e}^{(-12.08)} \times A A D T^{1.25} \times L$
Single-Vehicle	$N_{\text {KABC, } S V}=\mathrm{e}^{(-7.37)} \times A A D T^{0.61} \times L$
Multiple-Vehicle Driveway-Related	$N_{\text {KABC, MV-D }}=N_{\text {Total, } M V-D} \times 0.342$
Vehicle-Pedestrian	$N_{\text {Ped }}=\Sigma N_{\text {Total }} \times$ CMFs \times PedFactor $_{\text {Table12.8 }}$
Vehicle-Bicycle	$N_{\text {Bike }}=\Sigma N_{\text {Total }} \times$ CMFs \times BikeFactor $_{\text {Table12.9 }}$
Multilane Divided	
Multiple-Vehicle Nondriveway	$N_{\text {KABC, MV-ND }}=\mathrm{e}^{(-12.76)} \times A A D T^{1.28} \times L$
Single-Vehicle	$N_{\text {KABC, } S V}=\mathrm{e}^{(-8.71)} \times A A D T^{0.66} \times L$
Multiple-Vehicle Driveway-Related	$N_{\text {KABC, MV-D }}=N_{\text {Total, MV-D }} \times 0.284$
Vehicle-Pedestrian	$N_{\text {Ped }}=\Sigma N_{\text {Total }} \times$ CMFs \times PedFactor ${ }_{\text {Table12.8 }}$
Vehicle-Bicycle	$N_{\text {Bike }}=\Sigma N_{\text {Total }} \times$ CMFs \times BikeFactor $_{\text {Table12.9 }}$
Five-Lane (Including center TWLTL)	
Multiple-Vehicle Nondriveway	$N_{K A B C, M V-N D}=\mathrm{e}^{(-10.47)} \times A A D T^{1.12} \times L$
Single-Vehicle	$N_{\text {KABC, } S V}=\mathrm{e}^{(-4.43)} \times A A D T^{0.35} \times L$
Multiple-Vehicle Driveway-Related	$N_{\text {KABC, MV-D }}=N_{\text {Total, MV-D }} \times 0.269$
Vehicle-Pedestrian	$N_{\text {Ped }}=\Sigma N_{\text {Total }} \times$ CMFs \times PedFactor $_{\text {Table12.8 }}$
Vehicle-Bicycle	$N_{\text {Bike }}=\Sigma N_{\text {Total }} \times$ CMFs \times BikeFactor $_{\text {Table12.9 }}$

2.2 Site Selection and Data Assembly

The HSM calibration procedure requires two essential types of data: (1) roadway attributes and (2) crash data. Each of these was assembled for the years 2005 through 2008.

The roadway characteristic data were collected through the Florida Roadway Characteristics Inventory (RCI), which is maintained by the Florida Department of Transportation (FDOT). The RCI contains a wide variety of roadway data for all roads that are maintained by FDOT. End-of-year archived copies of the RCI were obtained for years 2005, 2006, 2007, and 2008. As the RCI includes roadway segments that are no longer in use, as well as segments that are not part of the state highway system (SHS), the "STATEXPT" variable was used to restrict segments to those identified as "Active on SHS." This qualification was made because inactive and non SHS roadways do not have complete crash and geometric data that is necessary for HSM calibration. The proportion of the RCI segments which qualify as active segments for this analysis is shown in Table 2.4.

Table 2.4 RCI Percent Share by Section Status

Section Status	\% Share			
	$\mathbf{2 0 0 5}$	$\mathbf{2 0 0 6}$	$\mathbf{2 0 0 7}$	$\mathbf{2 0 0 8}$
'1' - Pending	1.2	1.2	1.1	0.7
'2' - Active on SHS	11.1	11.3	11.1	9.1
'4' - Inactive	1.4	1.9	2.5	5.2
$' 5 '$ - Deleted	1.7	2.2	2.2	2
'7' - Active Exclusive	9	9.9	10.9	25.4
'9' - Active off the SHS	75.6	73.6	72.1	56.6
'17' - Active off Exclusive	-	-	-	0.9
Total	100	100	100	100

For each year, twenty-one segment attributes were extracted from the RCI, resulting in data collected on fifteen of the twenty-one roadway attributes identified in Table A-2 of Volume 2 of the HSM (page A-6). Table 2.5 is derived from Table A-2 of the HSM and shows the segment data elements that were collected from the RCI and elements for which default values were assumed.

The reader will note from Table 2.1 that the majority of the necessary roadway characteristics were obtained from the RCI. For the data elements that were not available through the RCI, recommended HSM default values were assumed. In the case of roadside fixed objects, object offset and density assumptions were taken so that the CMF was equal to 1.0. For urban driveway density and type, default values were used based on the data used in the development of the urban and suburban arterial SPFs (5). In addition to the roadway attributes required by the HSM for Part C analysis, data on bike lanes were also included as part of this research effort.

Table 2.5 Segment Data Elements Used in the Development of Florida Calibration Factors

Required Roadway Characteristics	Data Availability by Facility Type ${ }^{\text {a }}$							
	Rural Two-Lane Two-Way Roads	Rural Multilane Highways		Urban and Suburban Arterials				
	R2U	R4U	R4D	U2U	U32LT	U4U	U4D	U52LT
Number of Lanes	\checkmark							
Functional Classification	\checkmark							
AADT	\checkmark							
Median Type	\checkmark							
Surface Width	\checkmark							
Shoulder Type	\checkmark	\checkmark	\checkmark					
Shoulder Width	\checkmark	\checkmark	\checkmark					
Horizontal Curve Location	\checkmark							
Median Width			\checkmark				\checkmark	
Number of Luminaries	\checkmark							
Speed Limit				\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Type of Parking				\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Grade	\times							
Centerline Rumble Strips	x							
Roadside Hazard Rating	\times							
Side Slope		x						
Driveway Density	\times			x	x	x	x	x
Roadside Fixed Objects				\times	x	x	x	x
Automated Speed Enforcement	No automated speed enforcement was used in Florida during the study period							
Bike Lane ${ }^{\text {b }}$	\checkmark							
Bike Slot ${ }^{\text {b }}$	\checkmark							

a : Where \checkmark denotes that the data element was extracted from the RCI and \boldsymbol{x} denotes that a default value was assumed.
b: Bike lane attributes are not required by the HSM, but were considered relevant for investigation in Florida.
For the roadway characteristics for which information were available through the RCI, Table 2.6 gives the RCI variable associated with each data element. In cases such as lighting, shoulder width, and shoulder type, multiple RCI variables were required for the creation of the corresponding HSM segment attribute.

In the case of lighting presence, the RCI contained information on the number of luminaries along a given segment. In order to convert this data into whether or not the segment was to be considered lit, two lights were subtracted from the segment total for each boarding intersection, and the remaining lights were required to have a density of at least 26.4 lights per mile (one light every 200 feet), in order to be designated as a lit segment.

Multiple shoulder type and shoulder width variables were used in the case of rural twoway two-lane roads, in the identification of composite shoulders (a combination of paved and turf shoulders) for the shoulder CMF. While the HSM gives CMF values for a composite shoulder that is half paved and half turf (the resulting CMF is halfway between the CMF for a paved shoulder and the CMF for a turf shoulder), composite shoulders not conforming to this ratio are not addressed. For the purposes of this calibration analysis, shoulders were determined to be composite if the ratio of paved shoulder width to total shoulder width (paved plus turf) was
between one-third and two-thirds.

Table 2.6 RCI Variable Names Associated with HSM Required Roadway Characteristics

Required Roadway Characteristics	RCI Variable(s)
Number of Lanes	NOLANES
Functional Classification	FUNCLASS
AADT	SECTADT
Median Type	RDMEDIAN
Surface Width	SURWIDTH
Shoulder Type	SHLDTYPE, SHLDTYP2, SHLDTYP3
Shoulder Width	SLDWIDTH, SHLDWTH2, SHLDWTH3
Horizontal Curve Location	HRZPTINT
Median Width	MEDWIDTH
Number of Luminaries	NOHMSLUM, NOSTDLUM, NOLOCLUM, NOUDKLUM
Speed Limit	NYPSPEED
Type of Parking	N/A
Grade	N/A
Centerline Rumble Strips	N/A
Roadside Hazard Rating	N/A
Side Slope	N/A
Driveway Density	No automated speed enforcement was used in Florida during
the study period	
Rutomated Speed Enforcement Fixed Objects	BIKELNCD
Bike Lane	NIKSLTCD
Bike Slot	

The data in the RCI are in the form of database tables with each table representing an attribute. The rows in each table identify locations along the roadway where the corresponding attribute (such as number of lanes or shoulder width) changes value. As all attributes do not change value at the same locations, a segmenting procedure was developed to create homogenous roadway segments needed for the calibration procedure. This involves systematically splitting the roadway at points in which any of the attribute value changes (See Figure 1 for a schematic illustration of this procedure). As a result, the majority of Florida highways were divided into segments of less than half of a mile in rural locations and less than a quarter of a mile in urban locations. While the HSM does not establish a minimum segment length, the authors implemented a minimum of 0.10 miles for rural segments and 0.04 miles for urban segments; these lengths were the minimums used in the research efforts to develop the HSM SPFs (5, 6, 7). Segments shorter than these minimum thresholds were not used in the analysis.

Attribute 1segments
Attribute 2 segments
Attribute 3 segments

Homogenous segments

Figure 2.1 Creation of Homogeneous Segments from the Florida RCI
The segmentation procedure incorporated several consistency checks, including the removal of segments with missing and/or internally inconsistent attributes. It was ensured that segments do not include intersections, and curves were removed from the analysis. The entire segmentation procedure was automated using a Python script, and the output of this program was a set of homogenous roadway segments with all the necessary attributes required for calibration. Only segments that remained homogenous for all four years were retained for analysis in order to ensure consistency in year-to-year comparisons. See Appendix A for a detailed description of the segmentation procedure.

After the segments were identified, crashes were extracted from Florida's Crash Analysis Reporting System (CARS) for the 2005 through 2008 study period. The crashes identified as "occuring at an intersection" or "influenced by an intersection" in the crash reports were excluded. The remaining crashes were then assigned to roadway segments depending on their locations relative to the starting and ending mileposts of the segments.

Crash reporting in Florida is a three-tier system: long-form reports, short-form reports, and driver's reports (8). Long-form reports must be completed for any crashes involving injuries or fatalities, hazardous materials, government owned property, or the act of commiting a criminal offense; whereas, short-form reporting is used for property damage only crashes. Only crashes recorded using the long-form reports are included in the CARS database (9). Due to this limitation, only crashes with injuries or fatalities were included for analysis in this study, as the majority of the property damage only crashes are not readily available for analysis in Florida. Therefore, calibration factors developed in this study are for the fatal and injury crash SPFs and not for the total crash SPFs. The concentration on only fatal and injury crashes is not detrimental to statewide safety analysis due to the proven impact of crashes to be skewed heavily towards fatal and injury crashes (10).

Table 2.7 shows the number of segments, total mileage, and observed crashes for each year of the study period for the eight HSM segment types. Seven of the eight segment facility types met the recommended HSM values of at least 100 crashes on at least 30 to 50 segments. The SPFs for the rural four-lane undivided facility were not calibrated for the lack of adequate data.

Within the HSM crash esimation procedure for fatal and injury crashes on rural segments, the HSM offers two crash prediction equations, one for the KAB levels of severity and one for the KABC levels of severity. However, the urban and suburban procedure does not make this distinction, and single equations including only severity levels KABC are presented.

Table 2.7 Description of Segment Facility Types in Florida

Facility Attributes		Segment Statistics by HSM Facility Types in Florida							
		Rural Two-Lane Two-Way Roads	Rural Multilane Highways		Urban and Suburban Arterials				
		R2U	R4U	R4D	U2U	U32LT	U4U	U4D	U52LT
Total Number of Segments		4811	25	1351	5076	709	1251	7506	2868
Sum of Segment Lengths (mi.)		2121.0	4.6	546.2	628.4	66.3	96.1	970.6	253.6
Mean AADT	2005	5295	8164	15137	12179	15543	22849	28105	27889
	2006	5466	7972	15675	12472	15695	23128	28614	28123
	2007	5491	8784	15464	12511	15685	23256	28610	27877
	2008	5471	8348	15245	12390	15476	22470	28282	27699
Fatal and Injury Crashes	2005	951	0	587	962	112	298	3008	1024
	2006	982	2	589	881	134	348	2834	1029
	2007	948	4	584	1017	122	352	2916	998
	2008	906	4	546	836	121	320	2782	970
Fatal and Injury Crashes ${ }^{a}$	2005	664	0	386	-	-	-	-	-
	2006	691	2	390	-	-	-	-	-
	2007	629	3	378	-	-	-	-	-
	2008	617	3	347	-	-	-	-	-

a: Using the KABCO scale, these include only KAB crashes; crashes with severity level C (possible injury) are not included.

2.3 Segment Calibration Results

The calibration results are presented in this section. The complete set of calibration factors to be used in applying the HSM Part C predictive method to segments in Florida is given in Table 2.8. This calibration also includes the use of Florida-specific crash distributions for crash type on rural roads and nighttime crash distribution for rural and urban and suburban roads that were developed as a part of this research effort.

The yearly fluctuation of the calibration factors in Table 2.8 is apparent, including a significant decrease in crashes across six of the facility types in 2007 and 2008. Thus, yearly calibration factors strongly reflect the most recent trends in local crash history. The facility type with the greatest difference in expected crashes from the Washington State data from which the models were developed is the urban and suburban four-lane divided arterials. This segment type in Florida experiences sixty to seventy-five percent more crashes than similar segments in Washington State. With the exception of the urban and suburban four-lane divided arterials, three of the remaining facility types have calibration factors consistently lower than 1.0 , and three roughly fluctuate near 1.0.

Table 2.8 Florida Segment Calibration Factors for Fatal and Injury Prediction Models

Calibration Factor Time Frame		Calibration Factors by Facility Type						
		Rural Two- Lane Two-Way Roads	Rural Multilane Highways	Urban and Suburban Arterials				
		R2U	R4D	U2U	U32LT	U4U	U4D	U52LT
HSM SPF that was Calibrated		Eq. 10-6	Eq. 11-9	Eq. 12-10, 12-13, 1216, 12-19, \& 12-20	Eq. 12-10, 12-13, 12-$16,12-19$, $\& 12-20$	Eq. 12-10, 12-13, 1216, 12-19, \& 12-20	Eq. 12-10, 12-13, 12 16, 12-19, \& 12-20	Eq. 12-10, 12-13, 1216, 12-19, \& 12-20
Fatal and Injury Crashes (KABC)	2005	1.063	0.719	1.093	0.952	0.641	1.750	0.710
	2006	1.069	0.696	0.977	1.126	0.742	1.611	0.726
	2007	1.026	0.701	1.119	1.028	0.749	1.653	0.711
	2008	0.980	0.665	0.928	1.046	0.707	1.602	0.695
	2005-2006	1.066	0.707	1.035	1.040	0.692	1.680	0.693
	2007-2008	1.005	0.683	1.025	1.038	0.729	1.628	0.669
Fatal and Injury Crashes $(\mathrm{KAB})^{a}$	2005	1.353	0.769					
	2006	1.372	0.752					
	2007	1.241	0.740					
	2008	1.217	0.688					
	2005-2006	1.362	0.760					
	2007-2008	1.232	0.714					

a: Using the KABCO scale, these include only KAB crashes; crashes with severity level C (possible injury) are not included.

To accurately apply the CMFs in the crash prediction process, the researchers developed crash-type distributions for each facility type to replace the HSM default values. These crashtype distributions replace the values found in Table 10-4, Table 10-12, Table 11-6, Table 11-19, and Table 12-23 of Volume 2 of the HSM. The original HSM default crash distribution values and the corresponding Florida crash distributions are presented in Appendix B. Further, the procedure for generating these distributions is also described in Appendix B.

The percentage of relevant collisions for CMF applicability in Florida showed significant differences from the HSM default values. For rural facilities, the CMFs for lane width and shoulder width apply to run-off-the-road, head-on, and sideswipe crashes. By using HSM default values, these three crash types would be overestimated by twenty percent on two-lane two-way segments and twenty-five percent on multilane segments, as compared to the observed Florida crashes.

A comparison of the calibration factors for rural roads based on the origin of the collision type distribution is provided in Table 2.9. Urban and suburban roads are not included in Table 2.9 due to the fact that collision type distributions do not factor into any urban and suburban segment CMFs, thus they do not impact the calculated calibration factor. For Florida, the calibration factors with and without state-specific collision type distributions are similar due to the fact that many of the segments fit the base conditions of the SPF; therefore, the applicable CMF is 1.0 , and the collision type distributions are not a part of the crash estimation procedure. For example, on rural multilane divided highways, only 3.4 percent of segments have a lane
width CMF that is not equal to 1.0 , and on rural two-lane two-way roads, 10.4 percent of segments have lane width and shoulder width CMFs that are not equal to 1.0 . As a result, despite the difference in crashes affected by the lane width and shoulder width CMFs, the calibration factor was not significantly different when using the HSM default values versus the Florida derived values. This has also been observed by researchers in other states who have also developed state-specific collision type distributions for this purpose (2).

Table 2.9 Comparison of Calibration Factors Using HSM and Florida Collision Type Distributions

| Collision Type Distribution | Calibration Factor by Year and Collision Type Distribution | | | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| | $\mathbf{2 0 0 5}$ | $\mathbf{2 0 0 6}$ | $\mathbf{2 0 0 7}$ | $\mathbf{2 0 0 8}$ |
| Rural Two-Lane Two-Way Roads | | | | |
| Calibration Factor with HSM
 Default Values | 1.072 | 1.079 | 1.035 | 0.987 |
| Calibration Factor with Florida
 Derived Values | 1.063 | 1.069 | 1.026 | 0.980 |
| Rural Multilane Divided Highways | | | | |
| Calibration Factor with HSM
 Default Values | 0.719 | 0.696 | 0.701 | 0.664 |
| Calibration Factor with Florida
 Derived Values | 0.719 | 0.696 | 0.701 | 0.665 |

In the context of urban and suburban four-lane divided segments in Florida, the presence of bike lanes can be expected to affect the safety of the facility. As a CMF to control for this feature was not readily available, this study explored simplified approaches to accommodate the effect of bike lanes. This is discussed in further detail in Appendix C.

2.4 Sensitivity Analysis

The most difficult and time intensive aspects of the HSM calibration procedure are data collection and data processing. Many prospective HSM users either do not have the necessary data readily available or do not have it organized in a fashion that is conducive to HSM analysis. In the available Florida data, there were two elements for both rural and urban facilities for which the authors had to assume values: driveway density and roadside hazard rating for rural segments and driveway density and roadside fixed object for urban segments. In order to examine the impacts of these assumptions on the HSM crash estimation procedure in Florida, a sensitivity analysis was performed.

In the sensitivity analysis, 2008 crash frequency was estimated for segments using the calibration factors from 2007 and the assumptions discussed in the "Site Selection and Data Collection" section (standard application of the HSM Part C predictive method for 2008). Next, the crash frequency was calculated again for each segment using the same calibration factors and varying the relevant assumptions by 50 percent and 200 percent. These two crash frequency estimations were compared to find the change in the number of predicted crashes due to the variations in the assumptions. An example of the results table is given in Table 2.10, which shows the average difference in predicted KABC fatal and injury crashes on rural two-lane twoway segments for varying driveway density and roadside hazard rating assumptions. The values are relative to crashes predicted under "default" conditions of 5 driveways per mile and roadside
hazard rating of 3. Appendix D gives the complete results of the sensitivity analysis for each facility type in tables of similar structure to Table 2.10.

Table 2.10 Difference in Crashes per Mile by Varying Assumptions

Assumptions		Difference in Crashes per Mile					
Driveway Density (driveways/mi.)	Roadside Hazard Rating	Minimu \mathbf{m}	$\mathbf{5 \%}$	Mean	$\mathbf{9 5 \%}$	Maximu \mathbf{m}	Standard Deviatio \mathbf{n}
5	3	-	-	-	-	-	-
5	1	-0.31	-0.14	-0.06	-0.02	0.00	-0.040
5	5	0.01	0.02	0.07	0.16	0.35	0.047
10	1	-0.31	-0.10	-0.02	0.00	0.00	0.039
10	3	0.00	0.02	0.04	0.05	0.07	0.010
10	5	0.01	0.05	0.11	0.21	0.35	0.051
2.5	1	-0.30	-0.14	-0.06	-0.02	0.00	0.040
2.5	3	0.00	0.00	0.00	0.00	0.03	0.002
2.5	5	0.01	0.02	0.07	0.16	0.37	0.047

As Table 2.10 shows, in the case of the driveway density and roadside hazard rating assumptions for rural two-lane two-way roads, varying the assumptions causes a small change in the predicted crashes per mile. Under the worst case scenario, where both driveway density and roadside hazard rating were increased, there were 0.11 more crashes per mile predicted, meaning that if real world conditions in Florida were twice what they were assumed to be in this research effort, then the developed calibration factor with the Part C predictive method would systematically under-predict crashes by an average of 0.11 crashes per mile.

For urban and suburban facility types, a similar procedure was carried out, varying the driveway density and roadside fixed object assumptions. Across the five segment types, the average worst case scenario experienced a difference of 1.11 crashes per mile. However, it is unlikely that any of these scenarios would be realized, as the doubling of driveway density assumptions resulted in average driveway densities of over 80 driveways per mile for some segment types. Segments are not expected to experience an average driveway density this high, as a previous study in Florida identified average driveway densities for U32LT and U52LT segment types to be 32.86 driveways per mile, less than the default values assumed for these segments in this research effort (12).

Overall, it appears that the predicted crash rates will not be substantially different even if the true values of attributes such as driveway density and roadside hazard rating were significantly different from the "default" values assumed in the development of the calibration factors. At the same time, this exercise assumes a constant value for each of these attributes across all segments. The impact when the value of factors such as driveway density and roadside hazard vary by segments still remains to be tested.

2.5 Calibration Benefit

The purpose of the calibration process is to adapt the HSM crash prediction models to reflect the conditions of the area in which they are to be implemented. This section seeks to identify the
empirical benefits of calibration in Florida. The following procedure was employed.
First, for each of the seven segment types, the uncalibrated (or Base) SPFs from the HSM and other default values on crash type distributions were used to predict the crashes on all segments in 2008. The error in prediction of the uncalibrated model for each segment was calculated as the difference in the observed and predicted crashes.

Next, for each of the seven segment types, the calibrated (using 2007 data) SPFs from the HSM and other Florida-specific values on crash type distributions were used to predict the crashes on all segments in 2008. The error in prediction of the calibrated model for each segment was calculated as the difference in the observed and predicted crashes.

Results comparing the prediction errors from the uncalibrated and calibrated models are given in Table 2.11. The magnitude of the average prediction errors from calibrated models was lower than the corresponding values from the uncalibrated models for five of the seven facility types; the two exceptions being rural two-lane two-way segments and urban and suburban twolane undivided segments. This means that the total number of crashes observed across all segments of a specific facility type is closer to the total crashes predicted by the calibrated model than the total crashes predicted by the uncalibrated model for five of the seven facility types.

However, the average absolute error improved with calibration only for three facility types. It is interesting to note that all the three facility types with reduced absolute error after calibration were those that had 2007 calibration factors of less than 1.0. This may be due in part to the increase of error on zero-crash segments that is caused by a calibration factor greater than 1.0 (Note that the SPFs will necessarily over-predict the crashes for segments observed to have 0 crashes as it cannot predict negative values, and the extent of this over-prediction from a calibrated model will be higher than an uncalibrated model if the calibration factor is greater than 1.0).

The most substantial benefit of calibration across all facility types is in the variance and range of the prediction errors. Calibrated models showed a smaller variance of mean absolute error and a smaller range of mean absolute error for five and six facility types, respectively. These improvements are important because they show that calibration does reduce the number of segments where crashes are severely under or over predicted.

It is also useful to note that similar trends were also seen when carrying out this prediction-comparison procedure for another pair of years (2005-2006). The results of the 2006 predictions based on 2005 calibrations are shown in Table 2.12.

It is useful to note that the approach of comparing predictions for a single year was dictated by data limitations. It would be more appropriate to make forecasts for multiple future years and compare the expected predicted crashes with the observed crashes over the longer time horizon. This would consistent with the approach of assessing the safety benefits of any roadway improvement project over its "life span". Such a multi-year predictive analysis and validation is identified as a future step once data for a few more years are available.

Table 2.11 Base SPF versus Calibrated SPF Comparisons for 2008 Segment Crash Predictions

Facility Type	Mean Error									Mean Absolute Error		Variance of Absolute Error		5\% to 95\% Range of Absolute Error	
	Base SPF	Calibrate d SPF	Base SPF	Calibrate d SPF	Base SPF	Calibrate d SPF	Base SPF	Calibrate d SPF							
	0.003	0.009	0.275	0.278	0.157	0.155	0.910	0.908							
R4U	0.204	0.022	0.568	0.478	0.434	0.326	1.639	1.553							
U2U	0.013	0.034	0.267	0.281	0.148	0.149	0.881	0.873							
U32LT	-0.008	-0.003	0.267	0.270	0.160	0.158	0.870	0.867							
U4U	0.106	0.015	0.435	0.386	0.435	0.386	1.273	1.033							
U4D	-0.140	0.020	0.425	0.483	0.377	0.327	1.644	1.501							
U52LT	0.148	0.008	0.532	0.467	0.246	0.271	1.249	1.328							

Table 2.12 Base SPF versus Calibrated SPF Comparisons for 2006 Segment Crash Predictions

Facility Type	Mean Error									Mean Absolute Error		Variance of Mean Absolute Error		5\% to 95\% Range of Mean Absolute Error	
	Base SPF	Calibrate d SPF	Base SPF	Calibrate d SPF	Base SPF	Calibrate d SPF	Base SPF	Calibrate d SPF							
	-0.015	-0.001	0.284	0.290	0.196	0.192	0.911	0.907							
R4U	0.191	0.014	0.566	0.481	0.372	0.311	1.647	1.518							
U2U	0.004	0.021	0.269	0.278	0.154	0.152	0.872	0.864							
U32LT	-0.022	-0.029	0.289	0.284	0.176	0.179	0.862	0.868							
U4U	0.097	-0.038	0.436	0.370	0.207	0.241	1.081	0.957							
U4D	-0.144	0.033	0.436	0.500	0.459	0.402	1.634	1.503							
U52LT	0.136	-0.008	0.546	0.484	0.293	0.335	1.291	1.404							

2.6 Geographic Segmentation

Factors contributing to crash frequency could also vary across Florida due to a statewide diversity of driver demographics, weather patterns, and land usage. To examine the existence of such variations, the data were segmented (grouped) based on the location of the roadway within the state. The calibration process was repeated for each group and the local, group-specific calibration factors were compared to the overall, statewide calibration factors discussed earlier. If significant differences exist, this implies that it would be beneficial to utilize separate calibration factors in certain areas where driving conditions cause crash patterns to differ greatly.

The above procedure was carried out twice - first by segmenting the roadways by FDOT district (Section 2.6.1), and second by dividing them based on their respective county's population density (Section 2.6.2).

2.6.1 Segmentation by FDOT Districts

To illustrate any variations in crash-frequency across the districts, this process was first applied by grouping each roadway segment by county, and subsequently dividing the counties belonging to each of the FDOT's seven districts.

Table 2.13 shows the length of roadway available in the data for each district. For most facility types, it is obvious that sufficient mileage does not exist in each individual district to provide for statistically-significant results. The facility types with the maximum mileage at district level were rural two-lane undivided roads and urban four-lane divided arterials. The results for these two cases are discussed below. Those for each remaining facility type can be found in Appendix E.

Table 2.13 Lengths of Facility Type by District

District	Lengths of Roadway Segments						
	Rural Two-Lane Two-Way Roads	Rural Multilane Highways	Urban and Suburban Arterials				
	R2U	R4D	U2U	U32LT	U4U	U4D	U52LT
D1	419.76	109.55	88.39	10.52	9	177	23.7
D2	550.32	163.65	109.6	6.01	21	155	40.79
D3	660.28	69.73	114.1	10.69	15	136	43.48
D4	65.78	46.56	79.04	16.29	13	79.2	26.44
D5	269.96	124.77	107.3	11.26	14	268	77.78
D6	69.05	6.17	50.9	4.88	13	50.6	23.77
D7	85.81	25.74	79.1	6.59	12	105	17.6

In the Table $2.14, \mathrm{C}_{\mathrm{d}} / \mathrm{C}_{\mathrm{o}}$ denotes the ratio between the new district-wide calibration factor to the overall factor for the state of Florida. For instance, it can be deduced that for District 1 in $2005\left(\mathrm{C}_{\mathrm{d}} / \mathrm{C}_{\mathrm{o}}=0.97\right)$ the district calibration factor was three percent less than the overall. The following year however, District 1's district calibration factor was three percent greater.

The reader will note in every case except Districts 6 and 3, the average yearly variation (shown in the final column) is less than ten percent. However, the yearly values vary significantly. In District 6's case, the district factor is consistently greater than the overall factor, but in most cases, this relationship is not as consistent. From these results, it is not possible to predict whether the overall calibration factor over or underestimates crash frequency on rural two-lane roads in individual districts.

Table 2.14 Rural Two-Lane KABC District-Calibration

District	Average Crashes/Year	$\mathbf{C}_{\mathbf{d}} / \mathbf{C}_{\mathbf{0}}$				
		$\mathbf{2 0 0 5}$	$\mathbf{2 0 0 6}$	$\mathbf{2 0 0 7}$	$\mathbf{2 0 0 8}$	Avg.
D1	189.75	0.97	1.03	0.96	0.88	0.96
D2	209.25	0.94	1.01	1.01	1.19	1.04
D3	210.25	0.68	0.85	0.92	0.98	0.86
D4	30	1.15	1.00	0.78	0.75	0.92
D5	148.25	0.99	1.15	1.05	0.94	1.03
D6	89	1.23	1.32	1.15	1.27	1.24
D7	70.25	0.98	0.76	1.18	0.87	0.95

Table 2.15 shows the variation between the district and overall calibration factors for urban four-lane arterials. For Districts 1-4, the general trend is a smaller district factor, implying that the overall calibration factor tends to slightly overestimate the crash frequency for these districts. The opposite occurs for Districts 6 and 7 .

The cause for these consistent trends in the data is unknown, since the relative location of the districts is not in itself a contributing factor to crash frequency. To develop a better understanding of why the overall calibration leads to overestimations in certain districts and underestimations in others, factors that directly contribute to traffic behavior should be considered.

Table 2.15 Urban Multilane Divided KABC District-Calibration

District	Average Crashes/Year	$\mathbf{C}_{\mathbf{d}} / \mathbf{C}_{\mathbf{0}}$				
		$\mathbf{2 0 0 5}$	$\mathbf{2 0 0 6}$	$\mathbf{2 0 0 7}$	$\mathbf{2 0 0 8}$	Avg.
D1	456.25	0.85	0.90	0.90	0.91	0.89
D2	387.25	0.86	0.87	0.99	0.92	0.91
D3	411	1.00	0.95	0.82	0.81	0.89
D4	158.75	0.97	0.88	0.82	0.97	0.91
D5	828.5	1.03	0.99	0.98	1.05	1.01
D6	221.75	1.10	1.20	1.24	1.12	1.17
D7	421.5	1.34	1.42	1.48	1.34	1.40

2.6.2 Segmentation by County Population Density

As a second segmenting factor, the counties were divided into four groups based on population density levels. Group 1 included Florida's six most populous counties (excluding Pinellas), from Broward (1,445 per sq. mile) to Duval (1,134 per sq. mile). Group 2 included the next ten, with Lee County as the most populous (788 per sq. mile) and Leon County as the most sparsely populated (413 per sq. mile) of the group. The next eighteen counties comprise Group 3 - these span from Hernando County (365 per sq. mile) to Santa Rosa County (150 per sq. mile). The fourth and final Group, consists of the remaining thirty-two, and includes Nassau County (113 per sq. mile) and Liberty County (Florida's least densely populated with merely 10 per sq. mile).

Pinellas - Florida's most densely populated county - is a major outlier, having more than twice the population density of the runner-up, Broward County. Since none of the available data is from Pinellas County, it was ignored for this study. Information on county population density was taken from the 2010 U.S. Census (13).

Table 2.16 shows the roadway mileage available in the data for each facility type and individual group number. Again, rural two-lane roads and urban multilane divided arterials are discussed below, while the results for each other facility type can be found in Appendix E.

Table 2.16 Lengths of Facility Type by Population Density Group Number

District	Lengths of Roadway Segments								
	Rural Two-Lane Two-Way Roads	Rural Multilane Highways		Urban and Suburban Arterials					
	R2U	R4D	U2U	U32LT	U4U	U4D	U52LT		
	92.44	36.27	138.93	7.74	47.94	240.3	91.75		
G2	215.15	80.77	202.62	24.79	26.96	272.1	80.55		
G3	596.88	238.58	170.59	18.41	8.98	373.8	66.05		
G4	1216.49	190.55	105.98	12.23	9.85	66.81	10.04		

Table 2.17 shows the results of the population density segmentation for rural 2-lane roads. The obvious trend in the data is that the group-to-overall calibration factor ratio $\left(\mathrm{C}_{\mathrm{g}} / \mathrm{C}_{\mathrm{o}}\right)$ consistently decreases with simultaneously with population density. For instance, note that the average ratio for Group 1 (the highest-density group) is 1.22 , implying that its calibration factor is 22 percent greater than the overall factor. With each successive group, the average ratio decreases, until finally it reaches 0.94 for Group 4 (the lowest-density group).

Furthermore, this trend is clearly visible for each single year of the study, implying that the overall calibration factor consistently tends to underestimate crash frequency on rural 2-lane roads in more populated areas, while overestimating in those counties with less density.

Table 2.17 Rural 2 Lane KABC Population Density-Calibration

District	Average Crashes/Year	$\mathbf{C}_{\mathbf{g}} / \mathbf{C}_{\mathbf{o}}$				
		$\mathbf{2 0 0 5}$	$\mathbf{2 0 0 6}$	$\mathbf{2 0 0 7}$	$\mathbf{2 0 0 8}$	Avg.
G1	110.50	1.28	1.23	1.30	1.07	1.22
G2	129.75	1.06	1.11	1.21	1.05	1.11
G3	290.25	1.05	1.02	0.91	0.93	0.98
G4	416.25	0.89	0.91	0.94	1.02	0.94

Table 2.18 suggests that the same appears to be true for urban facility types. Again, the group-to-overall ratio decreases steadily with population density. Higher population counties (particularly those in the highest-density group) tend to experience more crashes than are accounted for by the statewide calibration factor.

The results for the remaining facility types (especially those for which a larger portion of
data is available) appear to support the same trend (See Appendix E for details). The implication of these results is that it may be beneficial for higher-density areas to develop local or countywide calibration factors, to avoid severely underestimating crash frequency.

Table 2.18 Urban 4 Lane Divided KABC Population Density-Calibration

District	Average Crashes/Year	$\mathbf{C}_{\mathbf{g}} / \mathbf{C}_{\mathbf{o}}$				
		$\mathbf{2 0 0 5}$	$\mathbf{2 0 0 6}$	$\mathbf{2 0 0 7}$	$\mathbf{2 0 0 8}$	Avg.
G1	1011.50	1.23	1.28	1.32	1.23	1.26
G2	768.00	0.98	0.96	0.88	1.04	0.96
G3	922.25	0.87	0.86	0.87	0.83	0.86
G4	126.25	0.82	0.77	0.91	0.79	0.82

2.7 Florida-Specific SPFs

While the HSM supplies SPFs and provides a methodology for calibrating those SPFs to local conditions, it also notes that development of SPFs for a local area is possible if sufficient data are available (1). Development of a local SPF may provide more accurate crash estimations than calibration due to the flexibility that model development allows. The calibration process results in a factor that is multiplied to the existing SPF; however, the coefficient on the AADT variable of the regression model remains the same. The lack of flexibility in this coefficient forces the assumption that the general shape of the relationship between crashes and volume is identical for both the SPF's base area and the local area. While this assumption may hold true, or at least be reasonably close, it is possible that the same factors that necessitate calibration may also affect this relationship. These factors include driver behavior, weather, animal populations, crash reporting thresholds, and local road conditions.

Florida-specific SPFs were developed in order to compare the crash estimation results of locally derived SPFs to calibrated SPFs. Two facility types (those with the maximum volume of data) were considered for SPF development and comparison with the calibration approach: (1) rural two-lane roads and (2) urban and suburban four-lane divided arterials. The same data used for the calibration (described in Section 2.2 and Section 2.3) were also used for SPF development. Further, in this case, 80 percent of the data points from all four years were used to generate a calibration factor based on the HSM methodology and a Florida-specific SPF, while 20 percent of the data was withheld for comparison of the two procedures. As previously discussed, PDO crash data was not available in Florida, as a result, the SPFs developed and this comparison were conducted using KABC severity crashes.

As expected, the computed calibration factor for each of the two facility types with 80 percent of the data was very similar to the four year average calibration factor previously calculated. The calibration factor for rural two-lane roads was 1.039 , and the calibration factor for urban and suburban four-lane divided arterials was 1.657.

The SPFs were developed using negative binomial regression, taking the form shown in Equation 1.1 and repeated here:

$$
\begin{equation*}
N_{\text {spf }}=\exp (a+b \times \ln (A A D T)+\ln (\text { Length })) \tag{Equation 2.1}
\end{equation*}
$$

where a and b are regression coefficients, $A A D T$ is the annual average daily traffic volume on the segment, and Length is the length of the segment in miles. The SPFs for Florida were developed using all available segments for each year, rather than base conditions only, such
that the application of CMFs is not necessary for crash prediction.
The model coefficients developed for the Florida-specific SPFs, as well as comparisons to the HSM SPF model coefficients, are given in Table 2.19. While the model form for the SPFs for rural two-lane roads are the same for the Florida SPF and the HSM SPF, the Florida and HSM urban four-lane divided arterial SPFs do not have identical model forms. The HSM SPFs for urban arterials consist of independent estimations of multivehicle non-driveway crashes, single vehicle crashes, and multivehicle driveway related crashes (1). Of these three components, multivehicle non-driveway crashes make-up an average of 84 percent of the total crashes. The prediction model for multivehicle non-driveway is also the same model form as shown in Equation 2.1. Therefore, the model coefficients for multivehicle non-driveway crash estimation are shown in Table 2.19 for coefficient comparison to the Florida SPF, although the comparison is not as direct as for the rural two-lane roads.

Table 2.19 Florida and HSM Model Coefficients for Fatal and Injury (KABC) Crashes

Facility Type	a	b	Overdispersion Parameter	Calibration Factor
Florida Rural Two-Lane	-9.012	0.964	0.549	N/A
HSM Rural Two-Lane	-9.364	1.000	0.236	1.039
Florida Urban Four-Lane Divided	-11.010	1.185	0.807	N/A
HSM Urban Four-Lane Divided Non-Driveway	-12.760	1.280	1.310	1.657^{1}

1: This calibration factor is for urban four-lane divided fatal and injury crashes, not specific to non-driveway crashes.

After calculating calibration factors and developing Florida-specific SPFs based on the aforementioned randomly selected 80 percent of the data, the two crash estimation procedures were applied to the remaining 20 percent of the data. The error was then calculated based on the difference between the number of crashes observed on a given site and the number of crashes predicted. Table 2.20 displays the error statistics for the HSM calibration and Florida-specific SPF methods of crash estimation.

Table 2.20 Florida SPF and Calibrated HSM SPF Error Statistics

Facility Type		Average Error	$\begin{gathered} \text { Varianc } \\ \text { e of } \\ \text { Error } \end{gathered}$	5\% Error	95\% Error	Average Absolut e Error	Varianc e of Absolute Error	5\% Absolut e Error	95\% Absolut e Error
Rural TwoLane	Florida SPF	0.008	0.218	-0.897	0.464	0.276	0.142	0.030	0.925
	Calibrated HSM	0.005	0.218	-0.899	0.457	0.274	0.143	0.029	0.925
Urban FourLane Divide d	Florida SPF	0.023	0.649	-1.442	0.850	0.508	0.391	0.082	1.638
	Calibrated HSM	0.004	0.639	-1.486	0.798	0.500	0.388	0.079	1.605

Based on Table 2.20, there is not a system-wide improvement in the accuracy of (average) crash prediction through the development of state-specific SPFs relative to the use of the calibrated HSM equations. Several factors could contribute to this result. In the case of the rural 2-lane facility, the state-level equation closely mirrors the HSM equation (as was also evidenced by the calibration factor being very close to 1). Thus, for this facility type, Florida might be reasonably similar to the areas used to develop the corresponding HSM equation. In the case of the urban facility examined, the HSM has separate equations by crash type whereas the Florida equation does not vary by crash type. Finally, although 20 percent of the data points were withheld for testing the application of the model, these still come from the same years for which the model and the calibration factor were developed. Any true potential benefits to developing Florida-specific SPFs would be seen when using the SPF to estimate crashes in future years. Further analysis is needed when more years of data are available in order to test this possibility.

CHAPTER 3 CALIBRATION OF INTERSECTION SPFS

This chapter describes the calibration of the intersection SPFs for Florida Conditions. The intersection level SPFs presented in the HSM are first listed and those calibrated in this study are identified (Section 3.1). Next, in Section 3.2, the site selection and data assembly procedure is discussed extensively. Finally, in Section 3.3, the calibration results are presented and discussed.

Unlike in the case of Segment SPF calibration, geographic segmentations, sensitivity analysis, and predictive analyses were not undertaken due to the significantly small sizes of the estimation samples.

3.1 List of Intersection SPFs

The first version of the HSM provides intersection-level SPFs for three intersection types on rural two-lane two-way roads, three intersection types on rural multilane roads, and four intersection types on urban and suburban arterials. The rural two-lane two-way intersection types are: (1) three-leg stop controlled (R2 3ST), (2) four-leg stop controlled (R2 4ST), and (3) fourleg signalized (R2 4SG). The rural multilane intersection types are: (1) three-leg stop controlled (RM 3ST), (2) four-leg stop controlled (RM 4ST), and (3) four-leg signalized (RM 4SG). The urban and suburban arterial intersection types are: (1) three-leg stop controlled (U 3ST), (2) fourleg stop controlled (U 4ST), (3) three-leg signalized (U 3SG), and (4) four-leg signalized (U 4SG).

The HSM procedure for intersection crash prediction is very similar to that of roadway segments, since each facility type requires a specific SPF which calculates the crash frequency for base conditions. Additionally, separate SPFs are generally provided for analyzing total crashes (includes crashes with property damage only) and only fatal and injury crashes. A very limited sample size of intersections was available for this study. As such, not every facility type had a large enough sample size for a calibration factor to be calculated. Additionally, similarly to the segment calibration, the SPFs for total crashes were not calibrated, as all PDO crashes are not fully recorded by the long-form crash reports used to populate Florida's CAR System. Table 3.1 provides a reference to all rural intersection SPF equations relevant to this chapter, and a notation as to whether or not it could be calibrated.

Table 3.1 Rural HSM Intersection SPFs by Facility Type and Severity Level

Facility Type by Crash Severity Level	SPF	Calibrate d for Florida
Total Crashes		
Rural Two-Lane Three-Leg StopControlled	$N_{\text {Total }}=A A D T_{\text {maj }}{ }^{0.79} \times A A D T_{\text {min }}{ }^{0.49} \times \mathrm{e}^{(-9.86)}$	$\mathrm{No}^{\text {a }}$
Rural Two-Lane Four-Leg Stop-Controlled	$N_{\text {Total }}=A A D T_{\text {maj }}{ }^{0.60} \times A A D T_{\text {min }}{ }^{0.61} \times \mathrm{e}^{(-8.56)}$	$\mathrm{No}^{\text {a }}$
Rural Two-Lane Four-Leg Signalized	$N_{\text {Total }}=A A D T_{\text {maj }}{ }^{0.60} \times A A D T_{\text {min }}{ }^{0.20} \times \mathrm{e}^{(-5.13)}$	$\mathrm{No}^{\text {a }}$
Rural Multilane Three-Leg Stop-Controlled	$N_{\text {Total }}=A A D T_{\text {maj }}{ }^{1.204} \times A A D T_{\text {min }}{ }^{0.236} \times \mathrm{e}^{(-12.526)}$	$\mathrm{No}^{\text {a }}$
Rural Multilane Four-Leg Stop-Controlled	$N_{\text {Total }}=A A D T_{\text {maj }}{ }^{0.848} \times A A D T_{\text {min }}{ }^{0.448} \times \mathrm{e}^{(-10.008)}$	$\mathrm{No}^{\text {a }}$
Rural Multilane Four-Leg Signalized	$N_{\text {Total }}=A A D T_{\text {maj }}{ }^{0.722} \times A A D T_{\text {min }}{ }^{0.337} \times \mathrm{e}^{(-7.182)}$	$\mathrm{No}^{\text {a }}$
KABC Fatal and Injury Crashes		
Rural Two-Lane Three-Leg StopControlled	$N_{\text {KABC }}=N_{\text {Total }} \times 0.415$	Yes
Rural Two-Lane Four-Leg Stop-Controlled	$N_{\text {KABC }}=N_{\text {Total }} \times 0.431$	Yes
Rural Two-Lane Four-Leg Signalized	$N_{\text {KABC }}=N_{\text {Total }} \times 0.340$	Yes
Rural Multilane Three-Leg Stop-Controlled	$N_{\text {KABC }}=A A D T_{\text {maj }}{ }^{1.107} \times A A D T_{\text {min }}{ }^{0.272} \times \mathrm{e}^{(-12.664)}$	$\mathrm{No}^{\text {b }}$
Rural Multilane Four-Leg Stop-Controlled	$N_{\text {KABC }}=A A D T_{\text {maj }}{ }^{0.888} \times A A D T_{\text {min }}{ }^{0.525} \times \mathrm{e}^{(-11.554)}$	$\mathrm{No}^{\text {b }}$
Rural Multilane Four-Leg Signalized	$N_{\text {KABC }}=A A D T_{\text {maj }} 0.638 \times A A D T_{\text {min }}{ }^{0.232} \times \mathrm{e}^{(-6.393)}$	Yes
KAB Fatal and Injury Crashes		
Rural Two-Lane Three-Leg StopControlled	$N_{\text {KAB }}=N_{\text {Total }} \times 0.223$	Yes
Rural Two-Lane Four-Leg Stop-Controlled	$N_{\text {KAB }}=N_{\text {Total }} \times 0.223$	Yes
Rural Two-Lane Four-Leg Signalized	$N_{\text {KAB }}=N_{\text {Total }} \times 0.135$	Yes
Rural Multilane Three-Leg Stop-Controlled	$N_{K A B}=A A D T_{\text {maj }}{ }^{1.013} \times A A D T_{\text {min }}{ }^{0.228} \times \mathrm{e}^{(-11.989)}$	$\mathrm{No}^{\text {b }}$
Rural Multilane Four-Leg Stop-Controlled	$N_{\text {KAB }}=A A D T_{\text {maj }} 0.828 \times A A D T_{\text {min }}{ }^{0.412} \times \mathrm{e}^{(-10.734)}$	$\mathrm{No}^{\text {b }}$
Rural Multilane Four-Leg Signalized	$N_{\text {KAB }}=\mathrm{AADT}_{\text {total }}{ }^{1.279} \times \mathrm{e}^{(-12.011)}$	Yes

a : SPFs were not calibrated due to poor data quality of PDO crashes. b: SPFs were not calibrated due to insufficient data.

Table 3.2 and Table 3.3 display the components of the HSM intersection SPFs for the four urban and suburban facility types. These urban and suburban SPFs are each composed of four equations to estimate different types of intersection crashes: (1) multiple-vehicle, (2) singlevehicle, (3) vehicle-pedestrian, and (4) vehicle-bicycle. While each of these four equations are not calibrated individually, the sum of these four components forms the urban and suburban SPF which is calibrated to Florida conditions. Table 3.2 gives the SPF components for total crashes at the four urban and suburban intersection facility types; none of these SPFs could be calibrated due to the aforementioned issue of poor data quality for PDO crashes. Table 3.3 provides the SPF components for fatal and injury crashes on urban and suburban intersections. From the four potential facility types, there was sufficient data to develop calibration factors for three-leg and four-leg signalized intersections.

Table 3.2 Urban and Suburban HSM Intersection SPFs for Total Crashes

SPF Component by Facility Type	SPF
Three-Leg Stop Controlled ${ }^{\text {a }}$	
Multiple-Vehicle	$N_{\text {Total, }, M V}=A A D T_{\text {maj }}{ }^{1.11} \times A A D T_{\text {min }}{ }^{0.41} \times \mathrm{e}^{(-13.36)}$
Single-Vehicle	$N_{\text {Total, SV }}=A A D T_{\text {maj }}{ }^{0.16} \times A A D T_{\text {min }}{ }^{0.51} \times \mathrm{e}^{(-6.81)}$
Vehicle-Pedestrian	$N_{\text {Ped }}=\left(N_{\text {Total, }, M V}+N_{\text {Total, SV }}\right) \times 0.021$
Vehicle-Bicycle	$N_{\text {Bike }}=\left(N_{\text {Total, } M V}+N_{\text {Total, SV }}\right) \times 0.016$
Three-Leg Signalized ${ }^{\text {a }}$	
Multiple-Vehicle	$N_{\text {Total, }, \mathrm{MV}}=A A D T_{\text {maj }}{ }^{1.11} \times A A D T_{\text {min }}{ }^{0.26} \times \mathrm{e}^{(-12.13)}$
Single-Vehicle	$N_{\text {Total }, S V}=A A D T_{\text {maj }}{ }^{0.42} \times A A D T_{\text {min }}{ }^{0.40} \times \mathrm{e}^{(-9.02)}$
Vehicle-Pedestrian	$N_{\text {Ped }}=A A D T_{\text {total }}{ }^{0.05} \times\left(A A D T_{\text {min }} / A A D T_{\text {maj }}\right)^{0.24} \times$ PedVol $^{0.41} \times n_{\text {lanesx }}{ }^{0.09} \times \mathrm{e}^{(-6.60)}$
Vehicle-Bicycle	$N_{\text {Bike }}=\left(N_{\text {Total, }, M V}+N_{\text {Total, }, \text { SV }}\right) \times 0.011$
Four-Leg Stop Controlled ${ }^{\text {a }}$	
Multiple-Vehicle	$N_{\text {Total }, M V}=A A D T_{\text {maj }}{ }^{0.82} \times A A D T_{\text {min }}{ }^{0.25} \times \mathrm{e}^{(-8.90)}$
Single-Vehicle	$N_{\text {Total, SV }}=A A D T_{\text {maj }}{ }^{0.33} \times A A D T_{\text {min }}{ }^{0.12} \times \mathrm{e}^{(-5.33)}$
Vehicle-Pedestrian	$N_{\text {Ped }}=\left(N_{\text {Total }, \text { MV }}+N_{\text {Total, } \text { SV }}\right) \times 0.022$
Vehicle-Bicycle	$N_{\text {Bike }}=\left(N_{\text {Total, } M V}+N_{\text {Total, SV }}\right) \times 0.018$
Four-Leg Signalized ${ }^{\text {a }}$	
Multiple-Vehicle	$N_{\text {Total, }, \mathrm{MV}}=A A D T_{\text {maj }}{ }^{1.07} \times A A D T_{\text {min }}{ }^{0.23} \times \mathrm{e}^{(-10.99)}$
Single-Vehicle	$N_{\text {Total, SV }}=A A D T_{\text {maj }}{ }^{0.68} \times A A D T_{\text {min }}{ }^{0.27} \times \mathrm{e}^{(-10.21)}$
Vehicle-Pedestrian	$N_{\text {Ped }}=A A D T_{\text {total }}{ }^{0.40} \times\left(A A D T_{\text {min }} / A A D T_{\text {maj }}\right)^{0.26} \times$ PedVol $^{0.45} \times n_{\text {lanesx }} 0.04 \times \mathrm{e}^{(-9.53)}$
Vehicle-Bicycle	$N_{\text {Bike }}=\left(N_{\text {Total, MV }}+N_{\text {Total, SV }}\right) \times 0.015$

a: SPFs were not calibrated due to poor data quality of PDO crashes.

Table 3.3 Urban and Suburban HSM Intersection SPFs for Fatal and Injury Crashes

SPF Component by Facility Type	SPF
Three-Leg Stop Controlled ${ }^{\text {a }}$	
Multiple-Vehicle	$N_{K A B C, M V}=A A D T_{\text {maj }}{ }^{1.166} \times A A D T_{\text {min }}{ }^{0.30} \times \mathrm{e}^{(-14.01)}$
Single-Vehicle	$N_{\text {KABC, SV }}=N_{\text {Total, SV }} \times 0.31$
Vehicle-Pedestrian	$N_{\text {Ped }}=\left(N_{\text {Total, }, \text { MV }}+N_{\text {Total, SV }}\right) \times 0.021$
Vehicle-Bicycle	$N_{\text {Bike }}=\left(N_{\text {Total }, M V}+N_{\text {Total, } \text { SV }}\right) \times 0.016$
Three-Leg Signalized	
Multiple-Vehicle	$N_{K A B C, M V}=A A D T_{\text {maj }}{ }^{1.02} \times A A D T_{\text {min }}{ }^{0.17} \times \mathrm{e}^{(-11.58)}$
Single-Vehicle	$N_{K A B C, S V}=A A D T_{\text {maj }}{ }^{0.27} \times A A D T_{\text {min }}{ }^{0.51} \times \mathrm{e}^{(-9.75)}$
Vehicle-Pedestrian	$N_{\text {Ped }}=A A D T_{\text {totala }} 0.05 \times\left(A A D T_{\text {min }} / A A D T_{\text {maj }}\right)^{0.24} \times$ PedVol ${ }^{0.41} \times n_{\text {laness }} 0.09 \times \mathrm{e}^{(-6.60)}$
Vehicle-Bicycle	$N_{\text {Bike }}=\left(N_{\text {Total, }, \text { VV }}+N_{\text {Total, SVV }}\right) \times 0.011$
Four-Leg Stop Controlled ${ }^{\text {a }}$	
Multiple-Vehicle	$N_{K A B C, M V}=A A D T_{\text {maj }}{ }^{0.93} \times A A D T_{\text {min }}{ }^{0.28} \times \mathrm{e}^{(-11.13)}$
Single-Vehicle	$N_{K A B C, S V}=N_{\text {Total }, \text { SV }} \times 0.28$
Vehicle-Pedestrian	$N_{\text {Ped }}=\left(N_{\text {Total, }, \text { VV }}+N_{\text {Total, SV }}\right) \times 0.022$
Vehicle-Bicycle	$N_{\text {Bike }}=\left(N_{\text {Total }, \text { MV }}+N_{\text {Total, sV }}\right) \times 0.018$
Four-Leg Signalized	
Multiple-Vehicle	$N_{K A B C, M V}=A A D T_{\text {maj }}{ }^{1.18} \times A A D T_{\text {min }}{ }^{0.22} \times \mathrm{e}^{(-13.14)}$
Single-Vehicle	$N_{K A B C, S V}=A A D T_{\text {maj }}{ }^{0.43} \times A A D T_{\text {min }}{ }^{0.29} \times \mathrm{e}^{(-9.25)}$
Vehicle-Pedestrian	$N_{\text {Ped }}=A A D T_{\text {totala }}{ }^{0.40} \times\left(A A D T_{\text {min }} / A A D T_{\text {maj }}\right)^{0.26} \times$ PedVol ${ }^{0.45} \times n_{\text {laness }} 0.04 \times \mathrm{e}^{(-9.93)}$
Vehicle-Bicycle	$N_{\text {Bike }}=\left(N_{\text {Total, MV }}+N_{\text {Total, SV }}\right) \times 0.015$

a: SPFs were not calibrated due to insufficient data.

3.2 Site Selection and Data Assembly

The HSM intersection calibration procedure requires two essential types of data: (1) intersection characteristics and (2) crash data.

To begin, a listing of all intersections in Florida was obtained from the Safety Engineering Section of the Florida Department of Transportation Safety Office. This list was then restricted to include only the facility types identified in the HSM. Additionally, only intersections of two state roads were retained for analysis, as AADT and crash data were not available for non-state roads.

In order to collect the necessary crash data corresponding with the identified intersections, crashes were compiled from the same source as the segment crashes, from Florida's CAR System. Crashes that occurred either "at an intersection" or "influenced by an intersection," were extracted for use in intersection calibration factor development. Crashes were assigned to the appropriate intersection based on the unique node identifier of each intersection.

In order to collect the intersection characteristic data several sources were used. First, intersection attributes were collected through the RCI, including geographic coordinates, number of approaches, AADT for each intersecting road, and intersection control. Remaining characteristics that were required for crash modification factors, but not directly available in the
database were found online using satellite images (Google Maps) based on the coordinates supplied by the RCI (14). Additional details on the data collection procedure can be found in Appendix G. Table 3.4 shows the necessary data for intersection SPF calibration and how these data were obtained for Florida intersections.

Table 3.4 Intersection Data Elements Used in the Development of Florida Calibration Factors

Required Intersection Characteristics	Data Availability by Facility Type ${ }^{\text {a }}$					
	Rural Two-Lane Two-WayRoads			Rural Multilane Highways RM 4SG	Urban and Suburban Arterials	
	R2 3ST	R2 4ST	R2 4SG		U 3SG	U 4SG
Number of Lanes	\checkmark-R	\checkmark-R	\checkmark-R	\checkmark-R	\checkmark-R	\checkmark-R
AADT	$\checkmark-R$	$\checkmark-\mathrm{R}$	$\checkmark-R$	$\checkmark-\mathrm{R}$	$\checkmark-R$	$\checkmark-\mathrm{R}$
Geographic Coordinates	$\checkmark-\mathrm{R}$	$\checkmark-\mathrm{R}$	\checkmark-R	\checkmark-R	$\checkmark-\mathrm{R}$	\checkmark-R
Number of Legs	$\checkmark-\mathrm{R}$	\checkmark-R	$\checkmark-\mathrm{R}$	\checkmark-R	\checkmark-R	\checkmark-R
Control Type	$\checkmark-\mathrm{R}$	$\checkmark-\mathrm{R}$	\checkmark-R	$\checkmark-\mathrm{R}$	\checkmark-R	$\checkmark-\mathrm{R}$
Intersection Skew Angle	\checkmark-G	\checkmark-G	\checkmark-G			
Intersection Left-Turn Lanes	\checkmark-G	\checkmark-G	\checkmark-G		\checkmark-G	\checkmark-G
Intersection Right-Turn Lanes	\checkmark-G	\checkmark-G	\checkmark-G		\checkmark-G	\checkmark-G
Lighting	\checkmark-G	\checkmark-G	\checkmark-G		\checkmark-G	\checkmark-G
Right-Turn-On-Red					\checkmark-G	\checkmark-G
Left-Turn Signal Phasing					$\checkmark-\mathrm{G}^{\mathrm{b}}$	$\checkmark-\mathrm{G}^{\mathrm{b}}$
Red-Light Cameras					\checkmark-G	\checkmark-G
Bus Stops (1000 ft)					\checkmark-G	\checkmark-G
Schools (1000 ft)					\checkmark-G	\checkmark-G
Alcohol Sales Establishments (1000 ft)					$\checkmark-\mathrm{G}^{\mathrm{b}}$	$\checkmark-\mathrm{G}^{\mathrm{b}}$
Pedestrian Activity Level					\times	\times
Max. Pedestrian Lanes Crossed					\checkmark-G	\checkmark-G

a : Where $\sqrt{ }$-R denotes that the data element was extracted from the RCI, $\checkmark-G$ the element that was found using Google Maps satellite images (See Appendix G), and \mathbf{x} HSM default values were assumed. b: Assumptions made based on Google Maps satellite images.

Table 3.5 shows the intersection count, AADT, and crash count for each intersection type that was evaluated in this study. The intersection crash data were available for five years: 2005 through 2009. However, intersection characteristics were recorded as of currently available satellite images, from 2010 in most cases. The reader will note that urban four-leg signalized intersections comprised a significantly large portion of the data. The urban and suburban fourleg signalized intersection was the only intersection facility type where a random sample of the available intersections were used for calibration; for each other intersection facility type, all available intersections were used for calibration.

Similarly to segments, rural facility types were evaluated for KABC crashes (fatal-andinjury crashes, including possible injuries) and KAB crashes (which disregard possible injuries), as dictated by the HSM. However, the procedures for urban facilities do not distinguish between
the two classifications, so they were not evaluated for KAB conditions.
Table 3.5 Description of Segment Facility Types in Florida

Facility Attributes		Segment Statistics by HSM Facility Types in Florida					
		Rural Two-Lane Two-Way Roads			RuralMultilaneHighways	Urban and Suburban Arterials	
		R2 3ST	R2 4ST	R2 4SG		U 3SG	U 4SG
Total Number of Intersections		39	24	28	25	45	121
Major Street AADT	2005	6275	5375	7511	12867	25578	36689
	2006	6556	5391	7721	12971	26171	36838
	2007	6686	5293	7518	12424	25787	36797
	2008	6252	5658	7579	12272	25964	36444
	2009	5825	5410	7529	11978	24098	35363
Minor Street AADT	2005	3617	3107	4273	6812	14347	22798
	2006	3777	3119	4418	7084	15116	22860
	2007	3774	3070	4303	6897	15384	22447
	2008	3707	3137	4318	7211	14756	22298
	2009	3465	2925	4336	6878	14097	22070
Fatal and Injury Crashes KABC	2005	28	25	48	46	113	815
	2006	30	23	55	48	112	756
	2007	27	16	33	57	123	715
	2008	23	17	38	44	109	698
	2009	26	27	45	46	80	700
Fatal and Injury Crashes $K_{A B}{ }^{\text {a }}$	2005	20	18	30	23		
	2006	21	16	29	27		
	2007	17	12	18	27		
	2008	11	10	21	19		
	2009	13	21	29	23		

a: Using the KABCO scale, these include only KAB crashes; crashes with severity level C (possible injury) are not included.

3.3 Intersection Calibration Results

Table 3.6 contains the calibration results for all included intersection types. Note that the derived calibration factors in urban areas are generally much larger than those in rural areas. For instance, in 2005, the uncalibrated SPF equation for four-leg signalized urban and suburban intersection crashes underestimates KABC crashes by a factor of 2.05 . However, in the same year, crash frequency for rural two-lane, four-leg signaled intersections was underestimated by a factor of 1.28 , and in every other rural case for 2005, the crash rate was actually overestimated. This pattern is present for every year of the study, which upholds the notion that the uncalibrated HSM SPFs tend to underestimate Florida's crash rates in urban areas.

Table 3.6 Intersection Calibration Results

Calibration Factor Time Frame		Calibration Factors by Facility Type					
		Rural Two-Lane Two-Way Roads			Rural Multilane Highways	Urban and Suburban Arterials	
		R2 3ST	R2 4ST	R2 4SG	RM 4SG	U 3SG	U 4SG
HSM SPF that was Calibrated		Eq. 10-8	Eq. 10-9	Eq. 10-10	Eq. 10-11 Eq. 10-12	$\begin{aligned} & \text { Eq. 12-21, } \\ & 12-24,12- \\ & 29, \& 12-31 \end{aligned}$	$\begin{aligned} & \text { Eq. 12-21, } \\ & 12-24,12- \\ & 29, \& 12-31 \end{aligned}$
Fatal and Injury Crashes KABC	2005	0.79	0.72	1.28	0.35	1.98	2.05
	2006	0.80	0.66	1.44	0.36	1.90	1.91
	2007	0.72	0.47	0.89	0.44	2.10	1.82
	2008	0.65	0.47	1.00	0.34	1.87	1.79
	2009	0.80	0.80	1.21	0.37	1.41	1.84
Fatal and Injury Crashes $K_{A B}{ }^{\text {a }}$	2005	1.06	1.00	2.02	0.47		
	2006	1.05	0.89	1.91	0.54		
	2007	0.84	0.68	1.22	0.57		
	2008	0.58	0.54	1.40	0.40		
	2009	0.75	1.21	1.96	0.50		

a: Using the KABCO scale, these include only KAB crashes; crashes with severity level C (possible injury) are not included.

CHAPTER 4 SUMMARY AND CONCLUSIONS

This study focused on the development of calibration factors for the segment- and intersection SPFs (for fatal- and injury- crashes) from the HSM using data from Florida. The estimated calibration factors have been presented in this document.

In the case of segment SPFs, the calibration factors were developed using state-wide data spanning multiple years. A systematic procedure was developed (and implemented using a python script) to extract the relevant data items from the state RCI and CARS databases and to assemble these in a format conducive for calibrations. A key component of this procedure involves segmenting roadways into homogenous segments. State-specific collision type distributions were also determined from the crash data as a replacement to the default values provided in the HSM. However, all CMFs were used directly from the HSM. Sensitivity analyses were conducted to assess the impacts (on the crash predictions) of assumptions made about attributes (such as driveway density) for which data were not available. Predictive validations were undertaken to compare the relative performances of the calibrated- and uncalibrated- equations.

In addition to the development of statewide factors, geographic stratifications were also undertaken (for segment SPFs) to develop separate factors by FDOT districts and based on population densities. Such district-level or population-group-level calibration factors may be used instead of the state-level factors if the localized factors were derived using adequate data. For instance, in analyzing a rural two-lane two-way segment in District 1, district level calibration factors can be used as these were developed based on over 400 miles of roadway experiencing about 190 crashes per year. Counties with very high population densities were found to systematically have a higher calibration factors compared to other regions. Thus, the use of the state-wide factors in these cases would result in an under prediction of crashes.

Finally, for two of the segment types, SPFs were also re-estimated entirely using local data and the predictive performance of these local SPFs were compared to those of the calibrated HSM equations. For the chosen segment types, the performance of the locally estimated equations was not any superior to that of the calibrated HSM equations based on the metrics used in the comparison.

In the case of intersection SPFs, significantly limited data were available and the data assembly procedure involved manual steps (such as look ups of images of intersections to determine it attributes). State wide calibration factors were developed with available data.

The calibration factors provided in this report are to be used along with the appropriate SPFs for project-level safety analyses conducted in the state of Florida. Specifically, the expected crashes predicted by the SPF equations in the HSM are to be scaled by the appropriate calibration factors (and other crash modification factors as needed). However, it is useful to acknowledge that the intersection equations were calibrated using relatively smaller sample sizes and so caution must be taken in using these factors.

It is anticipated that these equations will be re-calibrated periodically (such as yearly) and the new calibration factors be to be added to those already developed and presented in this report. It is useful to note that the application of the Empirical Bayes method for multi-year before-and-after studies benefit from the use of year-specific historical calibration factors instead of the applying one calibration factor across the entire time horizon of analysis.

Although this study resulted in the development of an extensive set of calibration factors
to facilitate the application of HSM methods in Florida, there are several avenues for enhancements.

The current effort focused only on "on system" roadway segments and intersections of two "on-system" roads. This is primarily because the AADT and crash data are available only for these segments. Thus, the calibration factors do not reflect the safety patterns at a substantial volume of roadways and intersections in the state. To address this issue, it would be beneficial to develop methodologies to collect or estimate AADTs at other locations so that additional segments and intersections can also be used for the calibration analysis.

Data from the short-form crash reports are not stored in the state's electronic crash database. Thus, the database misses a large volume of low severity (property damage only) crashes. Correspondingly, the HSM SPF equations for "total crashes" could not be calibrated in this effort. In this context, enhancing the crash data base to include all crashes would facilitate the calibration of these additional equations.

In the overall calibration process, the most time consuming step was the process of data assembly. The RCI and the crash database together do provide a strong foundation of data for the calibration of segment-level SPFs, although the potential for further enhancements also exist. In this context, efforts to explicitly link the crash data base, the RCI, and the intersection database would be of substantial value from the standpoint of future re-calibrations. Specifically, if an intersection database could be mapped to the intersecting roadway segments (using RCI identifiers), the process of extracting the data elements from the different sources could be efficiently automated. Even if these linkages are fully established, one needs to go through a process of segmentation to create homogenous roadway stretches needed for analysis (for calibrating segment-level SPFs). However, this process has been automated in this study.

Data on the following roadway attributes would be beneficial from the standpoint of calibrating and applying the SPFs: driveway density, roadside hazard rating, and roadside fixedobject density and offset distance. The current calibrations were performed using "default" values of these attributes (and hence the corresponding crash modification factors are taken to be 1). Explicitly incorporating the effect of bike lanes on safety (crash rates) is also important from the state's stand point. In the current study, the SPFs for urban and suburban four-lane divided roads were calibrated separately for those segments that had bike lanes and those that did not, and significant differences were observed. However, the total volume of data related to bike lanes from the RCI is still relatively small (but increasing, up from 50 miles/92 crashes in 2006 to 83 miles/ 187 crashes in 2008). In future, with the availability of additional data, the development of a crash modification factor for bike lanes would be of value. Alternatively, a separate SPF may be developed for arterials with bike lanes.

The crash modification factors attributes such as surface width and shoulder type were obtained from the HSM (i.e, Florida specific CMFs were not developed). The calibration factors developed reflect these assumptions made. At the same time, in this study, we found that a substantial fraction of the roadway segments conformed to the "base" conditions on most roadway attributes.

The current study also developed Florida-specific collision type distributions to replace the default values provided in the HSM. Such distributions can also be generated yearly from the state crash database. However, this study did not find substantial benefit for using these localized distributions over the HSM default simply because these affect only a relatively small proportion of the segments which were of the "non basic" type, which are the ones needing crash modification factors. With the inclusion of additional roadway segments (such as off-system roads) in the calibration procedure, the benefits of using state specific CMFs and collision-type distributions have to be re-examined.

The current HSM does not cover facilities such as freeways, toll roads, or highways with six or more lanes. Using the crash data and the RCI, it is feasible to develop these SPF equations locally for Florida and this is identified as a key next step. It would also be worthwhile to explore re-estimating all the HSM segment SPF equations using statewide data and then subsequently recalibrating these Florida-specific equations yearly and possibly by local geographic areas such as districts or counties with similar population densities. This would allow for Florida's extensive available roadway segment data to be put to its fullest use, rather than used in calibration, which is designed for use with a much smaller sample size. Estimation of crash prediction models specific to Florida would also allow for the exploration of alternative model forms (other than negative binomial) that may result in more accurate measures of safety for Florida.

Unlike in the case of the calibration of the segment SPFs, the calibration of the intersection SPFs was critically impacted by data issues. While the segment equations at the state levels were calibrated based on several hundreds of miles of roadway, the intersection equations were calibrated based on few (order of 10s) cases. Further, the data assembly involved significant manual effort (linking intersection to the intersecting roads in the RCI to determine the AADTs, looking up the intersection attributes using Google imaging tools etc). Again, this is unlike in the case of the segment equations in which the data assembly procedure was automated using a script. Thus, a critical next step in the context of calibrating intersection SPFs would be to develop and maintain a repository of intersections with data on crashes, AADTs, and the relevant geometric conditions required by the SPFs and CMFs. The calibration factors should be re-calculated using these larger samples. The crash modification factors and collision-type distributions used in the intersection calibrations were obtained from the HSM in this study. The replacement of the above with Florida-specific factors and distributions may be explored after the base calibrations have been performed with larger samples.

As in the case of segments, the current HSM does not cover all intersection types. The development of the SPFs for these and the possibility of re-estimating all the HSM intersection SPF equations using statewide data for any one year may also be explored once a data base of adequate samples has been established.

REFERENCES

1. American Association of State Highway and Transportation Officials. Highway Safety Manual. AASHTO, Washington, D.C., 2010.
2. Xie, F., K. Gladhill, K. K. Dixon, and C. M. Monsere. Calibrating the Highway Safety Manual Predictive Models for Oregon State Highways. TRB 90th Annual Meeting Compendium of Papers DVD. Paper \#11-3993. Transportation Research Board of the National Academies, Washington, D.C. 2011.
3. Sun, X., D. Magri, H. H. Shirazi, S. Gillella, and L. Li. Application of the Highway Safety Manual: Louisiana Experience with Rural Multilane Highways. TRB 90th Annual Meeting Compendium of Papers DVD. Paper \#11-2453. Transportation Research Board of the National Academies, Washington, D.C. 2011.
4. Saito, M., B. K. Brimley, and G. G. Schultz. Transportation Safety Data and Analysis Volume 2: Calibration of the Highway Safety Manual and Development of New Safety Performance Functions. Report Number UT-10.12b. Brigham Young University, Provo, UT. Utah Department of Transportation, Salt Lake City, Utah. March 2011. http://www.udot.utah.gov/main/uconowner.gf?n=4636004347486812. Accessed July 25, 2011.
5. Harwood, D. W., K. M. Bauer, K. R. Richard, D. K. Gilmore, J. L. Graham, I.B. Potts, D. J. Torbic, and E. Hauer. Methodology to Predict the Safety Performance of Urban and Suburban Arterials, NCHRP Web-Only Document 129, Phases I and II. National Cooperative Highway Research Program, Transportation Research Board, Washington, D. C., March 2007. http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_w129p1\&2.pdf. Accessed July 25, 2011.
6. Vogt, A., and J. G. Bared. Accident Models for Two-Lane Rural Roads: Segments and Intersections. Publication FHWA-RD-98-133. Federal Highway Administration, US Department of Transportation, October 1998.
7. Lord, D., S. R. Geedipally, B. N. Persaud, S. P. Washington, I. van Schalkwyk, J. N. Ivan, C. Lyon, and T. Jonsson. Methodology for Estimating the Safety Performance of Multilane Rural Highways, NCHRP Web-Only Document 126. National Cooperative Highway Research Program, Transportation Research Board, Washington, D.C., February 2008. http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_w126.pdf. Accessed July 25, 2011.
8. Florida Highway Patrol. FHP Policy on Crash Reports. Florida Department of Highway Safety and Motor Vehicles. http://www.flhsmv.gov/fhp/misc/Floridalaw/ReportForm.htm. Accessed July 25, 2011.
9. Benac, J., L. Nelson-Taullie, L. A. Spell, C. Wright, and J. J. Zogby. State of Florida Traffic Records Assessment. Florida Department of Transportation, June 2006.
http://www.dot.state.fl.us/safety/TRCC_files/posted\ documents/Traffic\ Records\ Assessment\%20Final\%20Report\%20-\%202006.pdf. Accessed July 25, 2011.
10. Council, F., E. Zaloshnja, T. Miller, and B. Persaud. Crash Cost Estimates by Maximum Police-Reported Injury Severity Within Selected Crash Geometries. Publication FHWA-HRT-05-051. Federal Highway Administration, US Department of Transportation, October 2005.
11. Federal Highway Administration. Crash Modification Factors Clearinghouse. US Department of Transportation. http://www.cmfclearinghouse.org/. Accessed July 25, 2011.
12. Pernia, J., J. J. Lu, and H. Peng. Safety Issues Related to Two-Way Left-Turn Lanes. University of South Florida, Tampa, Florida. Florida Department of Transportation, Tallahassee, Florida. January 2004. http://www.dot.state.fl.us/researchcenter/Completed_Proj/Summary_PL/FDOT_BC353_40_rpt.pdf. Accessed July 25, 2011.
13. United States Census Bureau. Population, Housing Units, Area, and Density: 2010 - State County / County Equivalent. 2010. http://factfinder2.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=DEC_10 SF1_GCTPH1.ST05\&prodType=table. Accessed August 30, 2011.
14. Google. Google Maps Satellite Images. 2010-2011. http://maps.google.com/. Accessed August 30, 2011.

APPENDIX A: PROCEDURE FOR CREATION OF HOMOGENEOUS SEGMENTS

Appendix A is divided into two sections. First section briefly describes the steps used in the procedure for creation of homogenous segmentation. Detailed methodology for each step is then presented in the next section. Following figure is the simple representation of the objective, creation of homogenous segments:

Attribute 1 segments
Attribute 2 segments
Attribute 3 segments

Homogenous segments

Figure A. 1 - Creation of homogenous segments

1. Overall Procedure:

Following sequential steps are performed in order to achieve the objective:
Step1: Export the data from Microsoft access database to the text format.
Output: RCI2005.txt, RCI2006.txt, RCI2007.txt, and RCI2008.txt
Step2: Now from this text file, extract each attribute (total 31 attributes) into a separate text file. Output:

FunClass.txt, MaxSpeed.txt, MedWidth.txt, RoadMedian.txt, NoLanes.txt, ShldType.txt, SectAADT.txt, ShldWidth.txt, SurfWidth.txt, TypePark.txt, StatExpt.txt, Intersection.txt, HrzPtInt.txt, HighMastLum_L.txt, HighMastLum_R.txt, SignLum_L.txt, SignLum_R.txt, StandLum_L.txt, StandLum_R.txt, UnderdeckLum_L.txt, UnderdeckLum_R.txt, LocalLum_L.txt, LocalLum_R.txt, ShldType2.txt, ShldType3.txt, ShldWidth2.txt, ShldWidth3.txt, BikeLaneCd.txt, BikeSltCd.txt, UrbSize.txt, and LandUse.txt.
Step3: Sort the extracted files by RoadSide , RoadwayID, and Begin_Post and save them into comma-delimited (.csv) format.
Output:
FunClassN.csv, MaxSpeedN.csv, MedWidthN.csv, RoadMedianN.csv, NoLanesN.csv, ShldTypeN.csv, SectAADTN.csv, ShldWidthN.csv, SurfWidthN.csv, TypeParkN.csv, StatExptN.csv, IntersectionN.csv, HrzPtIntN.csv, HighMastLum_LN.csv, HighMastLum_RN.csv, SignLum_LN.csv, SignLum_RN.csv, StandLum_LN.csv, StandLum_RN.csv, UnderdeckLum_LN.csv, UnderdeckLum_RN.csv, LocalLum_LN.csv, LocalLum_RN.csv, ShldType2N.csv, ShldType3N.csv, ShldWidth2N.csv, ShldWidth3N.csv, BikeLaneCdN.csv, BikeSltCdN.csv, UrbSizeN.csv, and LandUseN.csv.
Step4: Remove inactive roads ('StatExptN.csv') from all other files except 'IntersectionN.csv'. Output:

FunClassN1N.txt, MaxSpeedN1N.txt, MedWidthN1N.txt, RoadMedianN1N.txt,

NoLanesN1N.txt, ShldTypeN1N.txt, SectAADTN1N.txt, ShldWidthN1N.txt, SurfWidthN1N.txt, TypeParkN1N.txt, HrzPtIntN1N.txt, HighMastLum_LN1N.txt, HighMastLum_RN1N.txt, SignLum_LN1N.txt, SignLum_RN1N.txt, StandLum_LN1N.txt, StandLum RN1N.txt, UnderdeckLum LN1N.txt, UnderdeckLum RN1N.txt, LocalLum_LN1N.txt, LocalLum_RN1N.txt, ShldType2N1N.txt, ShldType3N1N.txt, ShldWidth2N1N.txt, ShldWidth3N1N.txt, BikeLaneCdN1N.txt, BikeSltCdN1N.txt, UrbSizeN1N.txt, and LandUseN1N.txt.
Step5: Sort selected files by RoadwayID, Begin_Post, and RoadSide , and save them into comma-delimited (.csv) format.
Output:
NoLanesN1N.csv, SurfWidthN1N.csv, MaxSpeedN1N.csv, FunClassN1N.csv, SectAADTN1N.csv, RoadMedianN1N.csv, MedWidthN1N.csv, UrbSizeN1N.csv, and LandUseN1N.csv
Step6: Perform consistency check to selected files and delete any duplicate or wrongly entered data.
Output:
NoLanesN1N1.txt, SurfWidthN1N1.txt, FunClassN1N1.txt, MaxSpeedN1N1.txt, SectAADTN1N1.txt, RoadMedianN1N1.txt, MedWidthN1N1.txt, UrbSizeN1N1.txt, LandUseN1N1.txt
Step7: Perform consistency check to the remaining files (except light pole data files) and delete any duplicate or wrongly entered data.
Output:
HrzPtIntN1N1.txt, ShldTypeN1N1.txt, ShldWidthN1N1.txt, TypeParkN1N1.txt, ShldType2N1N1.txt, ShldType3N1N1.txt, ShldWidth2N1N1.txt, ShldWidth3N1N1.txt, BikeLaneCdN1N1.txt, BikeSltCdN1N1.txt
Step8: Sort selected files by RoadwayID, Begin_Post, and RoadSide , and save them into comma-delimited (.csv) format.
Output:
NoLanesN1N1.csv, ShldTypeN1N1.csv, ShldWidthN1N1.csv, SurfWidthN1N1.csv, TypeParkN1N1.csv, HrzPtIntN1N1.csv, MaxSpeedN1N1.csv, FunClassN1N1.csv, SectAADTN1N1.csv, RoadMedianN1N1.csv, MedWidthN1N1.csv, ShldType2N1N1.csv, ShldType3N1N1.csv, ShldWidth2N1N1.csv, ShldWidth3N1N1.csv, BikeLaneCdN1N1.csv, BikeSltCdN1N1.csv, UrbSizeN1N1.csv, LandUseN1N1.csv
Step9: Combine two roadsides ('L' and 'R') of a segment into one and save them as 'D' (Divided). Also, rename segments with ' C ' as ' U ' (Undivided).
Output:
NoLanesN1N1 _Combined.txt, SurfWidthN1N1 _Combined.txt, MaxSpeedN1N1 _Combined.txt, ShldTypeN1N1 _Combined.txt, ShldWidthN1N1 _Combined.txt, TypeParkN1N1 _Combined.txt, HrzPtIntN1N1 _Combined.txt, ShldType2N1N1 _Combined.txt, ShldType3N1N1 _Combined.txt, ShldWidth2N1N1 _Combined.txt, ShldWidth3N1N1 Combined.txt, BikeLaneCdN1N1 _Combined.txt, BikeSltCdN1N1 _Combined.txt
Step10: Add all attributes one by one and make a final file with homogenous segments. Output: NoLanesN1N1_CombinedN35.txt
Step11: Remove curved portions of the homogenous segments. Output: NoLanesN1N1_CombinedN38.txt

Step12: Using the appropriately sorted intersection file (Intersection.csv), make sure that there are no intersections with a segment. This is achieved by breaking a segment at the intersection milepost.
Output: NoLanesN1N1_CombinedN_interns.txt
Step13: Map light poles to the segments.
Output: NoLanesN1N1_CombinedN_SegmentsWithLights10.txt
Step14: Map intersections to the homogenous segments from previous step.
Output: Segments_2005_Interns.txt
Step15: Map crashes to the segments.
Output: Segments_2005_Interns_Crashes.txt

2. Detailed Methodology

Following sections describe detailed methodology of each step. Additionally, flow charts are attached at the end.

Step 1: Export data from Microsoft Database (Manual)

Open the RCI database file in Microsoft access data base, Figure A.2. Double click on the second table that has roadway characteristics (RDWYCHAR). Now, go to 'Export' under 'External Data' and click on 'Text File'. Save the new text file to your desired location with name format as 'RCIyear.txt', e.g. 'RCI2005.txt'.

Security Warning Certain content in the database has been disabled Options．．．

Tables＊«	\triangle EXTRACDT－CONTYDOT	RDWYSEQ	FEATSEQ	RDWYCHAR－	DIRFMRD	DISTFMRD	MEASCODE－	TRVLWAY＿C－OFSET＿TYP－	RDWYFEA
－ －$^{\text {TRCR＿RCTIBLO1 }}$	12／30／2006	00135	00016	SECTADT			0	15690	331 围
TRCR＿RCIBLO2	12／30／2006 01	00135	00016	AADTDATE			0	2445305	331
	12／30／2006 01	00135	00016	AADTTYPE			0	2445306	331
	12／30／2006 01	00136	00001	SHLDTYPE	1		0	281742701	214
	12／30／2006 01	00136	00001	SLDWIDTH	1		0	281742801	214
	12／30／2006 01	00136	00001	HWYLOCAL			0	2212253	124
	12／30／2006 01	00136	00001	URBAREA			0	2215960	124
	12／30／2006 01	00136	00001	URBSIZE			0	2216822	124
	12／30／2006 01	00136	00001	RDACCESS			0	2778164	122
	12／30／2006 01	00136	00001	FUNCLASS			0	2210090	121
	12／30／2006 01	00136	00002	FUNCLASS			0	2210091	121
	12／30／2006 01	00136	00002	OLDFASYS			0	15694	112
	12／30／2006 01	00136	00003	FAHWYSYS			0	2208251	112
	12／30／2006 01	00136	00004	FAHWYSYS				2209264	112
	12／30／2006 01	00136	00004	LOCALNAM			0	15702	114
	12／30／2006 01	00136	00005	LOCALNAM			0	15703	114
	12／30／2006 01	00136	00006	LOCALNAM				15704	114
	12／30／2006 01	00136	00007	TYPEROAD			0	15718	120
	12／30／2006 01	00136	00011	STATEXPT			0	15712	140
	12／30／2006 01	00136	00012	NOLANES			0	15719	212
	12／30／2006 01	00136	00012	SURWIDTH			0	15720	212
	12／30／2006 01	00136	00013	BEGSECNM			0	15705	251
	12／30／2006 01	00136	00013	INTSRTP8			0	15706	251
	12／30／2006 01	00136	00014	INTSDIR7			0	15713	251
	12／30／2006 01	00136	00014	INTSRTP7			0	15714	251
	12／30／2006 01	00136	00015	INTSDIR9			0	15715	251
	12／30／2006 01	00136	00015	INTSRTP9			0	15716	251
	12／30／2006 01	00136	00016	ENDSECNM			0	15707	251
	12／30／2006 01	00136	00016	INTSRTP8			0	15708	251
	12／30／2006 01	00136	00017	AADTDATE			0	15695	331
	12／30／2006 01	00136	00017	AADTTYPE			0	15696	331
	12／30／2006 01	00136	00017	AVGDFACT			0	15697	331
	12／30／2006 01	00136	00017	AVGKFACT			0	15698	331
	12／30／2006 01	00136	00017	SECTADT			0	15699	331
	12／30／2006 01	00137	00001	OLDFASYS			0	15723	112
	12／30／2006 01	00137	00001	SHLDTYPE	1		0	281747301	214
	12／30／2006 01	00137	00001	SLDWIDTH	1		0	281747401	214
	Record：14 1 1 of 2295022 ＊｜＋	\％No．Filler	Search	$1 \square$	$\xrightarrow{\text { III }}$	\square			－
Datasheet View								Num Lock	国曲曲苋

Figure A． 2 －Export data from Microsoft Access database

SCRIPT STEPS

Script is written using Python and before running the script，one of the two pre－requisites，Figure A．3，includes providing the name of the working folder（workspace），where exported RCI data （RCI2005．txt）is located．Also，names of the RCI file（filename），intersection file，and crash file are required．

```
mainWorkspace = "C:/Documents and Settings/nsdhakar/Academics/RCI_data/2005/"
RCIFile = "RCI2O05.txt"
intersectionFile = "Intersection.csv"
crashFile = "CrshOnO5N.csv"
```

Figure A．3－Inputs to the script

Step 2: Extract Attribute Files

Variable 'RDWYCHAR' in RCI data contains the roadway characteristics/ attributes. Rows that have the desired roadway characteristic is extracted and written to a new file. For a roadway characteristic following variables are extracted from the RCI data: Attribute name (RDWYCHR), County (CONTYDOT), Roadway ID (RDWYID), Begin milepost (BEGSECPT), End milepost (ENDSECPT), Roadway side (RDWYSIDE), and Attribute value (RCDVALUE) . Roadway attributes considered for this project are provided in Table A.1.
Table A. 1 - Roadway Attributes

Variable in RCI	Description	Value Labels
NOLANES	Number Of Through Roadway Lanes	
SURFWIDTH	Through Pavement Surface Width	
ROADSIDE	Median Type	'D' - Divided
		'U' - Undivided

NOSTDLUM	Number of Standard Luminaries	
NOUDKLUM	Number of Underdeck Luminaries	
NOLOCLUM	Number of Local Luminaries	
BIKELNCD	Bicycle Lane	0 - Undesignated, 1 - Designated
BIKSLTCD	Bicycle Slot	0 - Undesignated, $1-$ Designated
URBSIZE	Urban Size	1 - Rural
		2 - Small Urban (5,000 - 49,999 population)
		3 - Small Urbanized (50,000 - 199,999 population)
		- Large Urbanized (200,000 - 499,999 population)
		5 - Metropolitan (500,000 or more population)

For crashes, HIGHESTINJ (Severity Level) and SITELOCA (Crash location - intersection related) are used from the crash database.
Following is the structure of the extracted attribute files:

CHAR	$\begin{aligned} & \text { COUNT } \\ & \mathrm{Y} \end{aligned}$	$\begin{aligned} & \text { ROADWA } \\ & \mathrm{Y} \end{aligned}$	$\begin{aligned} & \text { BEGIN_POS } \\ & \text { T } \end{aligned}$	$\begin{aligned} & \text { END_POS } \\ & \text { T } \end{aligned}$	$\begin{aligned} & \text { RDWYSID } \\ & \text { E } \end{aligned}$	ATTRIBUT E

Step 3: Sort Extracted Files

Attribute files created in the previous step are sorted by RDWYSIDE, ROADWAY, and BEGIN_POST, to make sure that in a file all segments with same roadside are together. Outputs of this process are comma delimited files (.CSV).

STEP 4: Remove Inactive Segments

In the RCI data, section status is represented by 'STATEXPT'. Variable Codes along with their share for each year are shown in the Table A. 2 below.
Table A. 2 - Remove inactive segments

Section Status	\% Share			
	$\mathbf{2 0 0 5}$	$\mathbf{2 0 0 6}$	$\mathbf{2 0 0 7}$	$\mathbf{2 0 0 8}$
'1' - Pending	1.2	1.2	1.1	0.7
'2' - Active on SHS	$\mathbf{1 1 . 1}$	$\mathbf{1 1 . 3}$	$\mathbf{1 1 . 1}$	$\mathbf{9 . 1}$
'4' - Inactive	1.4	1.9	2.5	5.2
'5' - Deleted	1.7	2.2	2.2	2
'7' - Active Exclusive	9	9.9	10.9	25.4
'9' - Active off the SHS	75.6	73.6	72.1	56.6
'17' - Active off Exclusive	-	-	-	0.9
Total	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$

In step 2, data for segment status attribute (STATEXPT) was exported to 'StatExp.txt'. This attribute is combined to each attribute file by using 'Combine two attributes' process (Step 10) details of this process are provided later. Afterwards, in each file, only those segments that have section status as 'Active on SHS' (STATEXPT = 2) are retained. At the end of this step, only active on system segments are present in each attribute file.

Statistics of rows deleted (Percentage share), in each file, during this step are presented in Table A. 3 .

Table A. 3 - Deleted Rows (\% share)

	2005	2006	2007	2008
NoLanes	71.61	72.5	73.53	74.71
ShldType	69.9	71.26	71.65	72.1
ShldWidth	70.41	71.69	71.89	71.85
SurfWidth	72.07	72.87	73.73	74.66
TypePark	34.52	34.92	35.95	36.27
HrzPtInt	12.29	12.69	13.02	13.3
MaxSpeed	37.42	40.35	41.08	45.15
FunClass	85.01	84.8	84.82	84.85
SectAADT	65.41	65.16	65.52	65.9
RoadMedian	52.83	53.93	55.1	56.69
MedWidth	51.88	53.26	54.57	56.32
HighMastLum_L	23.08	33.8	34.15	33.27
HighMastLum_R	52.16	57.23	56.93	54.21
SignLum_L	9.95	11.31	11.16	11.09
SignLum_R	31.36	31.97	31.72	32.91
StandLum_L	33.22	31.64	31.97	30.3
StandLum_R	56.29	55.88	56.38	54.77
UnderdeckLum_L	11.9	12.94	13	12.86
UnderdeckLum_R	24.63	24.91	25.39	25.97
LocalLum_L	9.67	8.3	8.57	6.67
LocalLum_R	8.87	9.02	9.28	7.5
ShldType2	51.91	53.88	54.37	55.22
ShldType3	54.28	52.78	65.91	65.29
ShldWidth2	52.93	54.79	55.27	55.6
ShldWidth3	53.73	52.34	65.4	64.02
BikeLaneCd	10.58	11.27	11.63	9.64
BikeSltCd	4.76	2.91	2.89	4.78
UrbSize	83.91	83.67	83.68	83.88
LandUse	65.89	68.7	70.04	69.86

Step 5: Sort Extracted Files

In next step, selected output files from the previous step are sorted by ROADWAY, BEGIN_POST, and RDWYSIDE. Outputs of this process are comma delimited files (.CSV). Following are the files that undergo this step:
NoLanesN1N.txt, SurfWidthN1N.txt, MaxSpeedN1N.txt, FunClassN1N.txt, SectAADTN1N.txt, RoadMedianN1N.txt, MedWidthN1N.txt, UrbSizeN1N.txt, and LandUseN1N. txt

Step 6 \& 7: Consistency Check

Before using the RCI data, we make sure that the obtained data is proper and consistent. That is achieved by making a process to perform consistency check, which identifies and removes possibly wrongly entered data. The step is divided in two parts: part 1 and part 2.

Consistency Check (Part 1):

Following files goes through this part: NoLanesN1N.csv, SurfWidthN1N.csv, FunClassN1N.csv, MaxSpeedN1N.csv, SectAADTN1N.csv, RoadMedianN1N.csv, MedWidthN1N.csv, UrbSizeN1N.csv, and LandUseN1N.csv.

Consistency Check (Part 2):

Following files goes through this part: HrzPtIntN1N.csv, ShldTypeN1N.csv, ShldWidthN1N.csv, TypeParkN1N.csv, ShldType2N1N.csv, ShldType3N1N.csv, ShldWidth2N1N.csv, ShldWidth3N1N.csv, BikeLaneCdN1N.csv, and BikeSltCdN1N.csv. Following rules, explained with examples, are used for consistency check:
(i) Duplicate rows with everything same

	COUNT	ROOADWA	BEGIN_POS	END_POS	RDWYSID	SHLDTYP
CHAR	Y	Y	T	T	E	E
SHLDTYP						
E	10	10000031	4.448	4.634	C	3
SHLDTYP E						

(ii) Duplicate rows with everything same except attribute value

	COUNT	ROOADWA	BEGIN_POS	END_POS	RDWYSID	SHLDTYP
CHAR	Y	Y	T	T	E	E
SHLDTYP						
E	10	10000031	4.634	4.818	C	0
SHLDTYP						
E	10	10000031	4.634	4.818	C	8

(iii) Single side segment

	COUNT	ROOADWA	BEGIN_POS	END_POS	RDWYSID	SHLDTYP
CHAR	Y	Y	T	T	E	E
SHLDTYP						
E	10	10000112	0.765	0.948	C	0

SHLDTYP	10	10000112	0.948	1.074	L	6
E						
SHLDTYP	10	10000112	1.074	1.483	C	3

(iv)Multiple segments with some parts overlapped

CHAR	$\begin{array}{r} \text { COUNT } \\ \mathrm{Y} \end{array}$	ROOADWA Y	$\begin{array}{r} \text { BEGIN_POS } \\ \mathrm{T} \end{array}$	$\begin{array}{r} \text { END_POS } \\ \mathrm{T} \end{array}$	$\begin{aligned} & \text { RDWYSID } \\ & \text { E } \end{aligned}$	SHLDTYP
$\begin{aligned} & \text { SHLDTYP } \\ & \text { E } \end{aligned}$	10	10000117	0	0.048	C	3
$\begin{aligned} & \text { SHLDTYP } \\ & \text { E } \end{aligned}$	10	10000117	0.048	0.126	C	6
$\begin{aligned} & \text { SHLDTYP } \\ & \mathrm{E} \end{aligned}$	10	10000117	0.048	0.17	C	0
$\begin{aligned} & \text { SHLDTYP } \\ & \text { E } \end{aligned}$	10	10000117	0.126	0.189	C	3
$\begin{aligned} & \text { SHLDTYP } \\ & \text { E } \end{aligned}$	10	10000117	0.17	0.875	C	3
$\begin{aligned} & \text { SHLDTYP } \\ & \mathrm{E} \end{aligned}$	10	10000117	0.189	0.315	C	0
$\begin{aligned} & \text { SHLDTYP } \\ & \text { E } \end{aligned}$	10	10000117	0.315	1	C	3
$\begin{aligned} & \text { SHLDTYP } \\ & \text { E } \end{aligned}$	10	10000117	0.875	1	C	5

Another example of such case:

CHAR	$\begin{array}{r} \text { COUNT } \\ \text { Y } \end{array}$	ROOADWA Y	BEGIN_POS	$\begin{array}{r} \hline \text { END_POS } \\ \mathrm{T} \end{array}$	$\begin{aligned} & \text { RDWYSID } \\ & \mathrm{E} \end{aligned}$	SHLDTYP
$\begin{aligned} & \text { SHLDTYP } \\ & \text { E } \end{aligned}$	10	10000125	1.007	1.513	C	0
$\begin{aligned} & \text { SHLDTYP } \\ & \text { E } \end{aligned}$	10	10000125	1.007	1.261	C	3
$\begin{aligned} & \text { SHLDTYP } \\ & \text { E } \end{aligned}$	10	10000125	1.261	1.387	C	0
$\begin{aligned} & \text { SHLDTYP } \\ & \text { E } \end{aligned}$	10	10000125	1.387	1.513	C	3

For all cases above, involved rows are deleted. Table A. 4 shows counts and percentage shares of the deleted rows during this step.

Table A. 4 - Deleted rows during consistency check (count and \% share)

	2005	2006	2007	2008
NoLanes	262	262	266	269
	(2.28)	(2.26)	(2.31)	(2.2)
SurfWidth	272	272	279	282
	(2.29)	(2.29)	(2.36)	(2.25)
FunClass	48		47	48
	(2.6)	47 (2.54)	(2.53)	(2.52)
MaxSpeed	296	296	285	276
	(4.97)	(4.96)	(4.8)	(4.61)
SectAADT	316	311	309	308
	(5.26)	(5.15)	(5.15)	(5.08)
RoadMedian	227	233	241	261
	(3.56)	(3.52)	(3.49)	(3.36)
MedWidth	238	240	245	265
	(3.56)	(3.48)	(3.43)	(3.34)
UrbSize	59		59	59
	(3.1)	58 (3.02)	(3.06)	(2.99)
LandUse			27	28
	29 (2.49)	29 (2.45)	(2.28)	(2.26)
HrzPtInt	395	392	384	381
	(4.37)	(4.28)	(4.2)	(4.16)
ShldType	650	670	695	772
	(4.79)	(4.86)	(4.85)	(4.82)
ShldType2	474	498	530	595
	(5.09)	(5.16)	(5.24)	(5.1)
ShldType3	8	8	3	3
	(5.16)	(5.23)	(3.33)	(3.57)
ShldWidth	678		741	840
	(4.81)	703 (4.9)	(4.93)	(4.97)
ShldWidth2	482		544	610
	(5.22)	509 (5.3)	(5.39)	(5.22)
ShldWidth3	8	8	3	3
	(5.16)	(5.23)	(3.3)	(3.39)
TypePark	306	303	295	291
	(3.94)	(3.92)	(3.87)	(3.81)
BikeLaneCd		57	55	100
	20 (3.15)	(4.21)	(3.57)	(3.41)
BikeSltCd	6	24	27	53
	(2.31)	(2.99)	(2.87)	(2.77)

Note: Number in the bracket represents \% share

Step 8: Sort Files

Files obtained from consistency checks are sorted by ROADWAY, BEGIN_POST, and RDWYSIDE. Outputs of this step are comma delimited files (.CSV).

Step 9: Combine Sides (L and R) of a Segment

In the original RCI data, a segment can have a roadside value of ' C ' (Center), or ' L ' (Left) or ' R ' (Right). In this step, segment with roadside ' C ' is renamed to ' U ' (undivided) and segments with roadsides ' L ' and ' R ' are combined together to represent as one segment with roadside ' D ' (divided). Adopted algorithm is explained in the next paragraph.

For a roadway, if a segment has roadside ' L ' or ' R ' then it is saved to the 'List' and a segment with same begin_post and end_post is searched. Once found, a new segment from the overlapped part with new attribute value and road side as 'D' (divided) is written to the output. Attributes for different road sides (L or R) are written in respective columns. Attribute value of a segment with roadside ' C ' is written in the column corresponding to roadside 'L'. Following example explains the process.

Table A. 5 - Combine sides input

COUNT	ROADWA	BEGIN_POS	END_POS	RDWYSID	
Y	Y	T	N	NOLANE S	
4	4040000	12.621	14.132	C	2
4	4040000	14.132	14.681	L	2
4	4040000	14.132	14.445	R	2
4	4040000	14.445	14.535	R	1
4	4040000	14.535	14.681	R	1

In the Table A.5, first segment has roadside ' C ', thus it is simply written to the output with roadside ' U '. For this segment lanes are written in 'NOLANES-L' column. Next segment is with road side ' L ', so we save this in the 'List' and look for a segment with roadside ' R ' that has begin_post between the begin and end posts of the saved segment. Once found, overlapped part of the found segment and saved segment is written to the output with road side ' D '. Now segment in the 'List' are overwritten with the non overlapped segment. This process is repeated until there is no non-overlapped segment left. Output of the segment in Table A. 5 looks as below, Table A.6:

Table A. 6 - Combine sides output

$\begin{aligned} & \text { COUNT } \\ & \mathrm{Y} \end{aligned}$	$\begin{aligned} & \text { ROADWA } \\ & \text { Y } \end{aligned}$	$\begin{aligned} & \text { BEGIN_POS } \\ & \text { T } \end{aligned}$	$\begin{aligned} & \text { END_POS } \\ & \text { T } \end{aligned}$	$\begin{aligned} & \text { RDWYSID } \\ & \text { E } \\ & \hline \end{aligned}$	NOLANES-L	$\begin{aligned} & \text { NOLANES } \\ & \text {-R } \end{aligned}$
4	4040000	12.621	14.132	U	2	0
4	4040000	14.132	14.445	D	2	2
4	4040000	14.445	14.535	D	2	1
4	4040000	14.535	14.681	D	2	1

Step 10: Combine Attributes

In this step all roadway attributes are combined to one file. Attributes are combined one by one; in short, at a time one new attribute is combined to the master file. Therefore, this step involves iterative process of combining two files (attributes) until all files are processed. Next, the algorithm used for combining two attributes is explained.
Following four cases are considered in the process of combining two attributes of a segment:
Case1: Begin_Post and End_Post of Segment2 are less and higher than Begin_Post of Segment1 resp. Also End_Post of Segment2 is less than or equal to End_Post of Segment1.

Figure A. 4 - Combine sides - Case 1
Case2: Begin_Post of segment2 is in the between Begin_Post and End_Post of Segment1 and End_Post of Segment 2 is less than or equal to End_Post of Segment1.

Figure A. 5 - Combine sides - Case 2
Case3: Begin_Post of segment1 is in the between Begin_Post and End_Post of Segment2 and End_Post of Segment 2 is higher than End_Post of Segment1.

Figure A. 6 - Combine sides - Case 3
Case4: Begin_Post and End_Post of Segment2 are less and higher than Begin_Post of Segment1 resp. Also End_Post of Segment2 is higher than End_Post of Segment1.

Figure A. 7 - Combine sides - Case 4
In above figures, dotted line represents the possible range of segment2 within the limits of segment 1 and solid line represents the actual segment length.
In each case, a segment is broken into an overlapped segment and non-overlapped segments. Overlapped segment contains attributes from both segments. Non-overlapped segment that is before the overlapped segment is written to the output. Non-overlapped segment that is after the overlapped segment further searches for segment 2 or segment (depends on where this nonoverlapped segment comes from) that might have some part of it overlapped. This process continues until the entire length of non-overlapped segment is found or begin_post of segment 1 or segment 2 starts at or after end_post of non-overlapped segment.
Additionally, every time two attributes are combined, the output file is sorted by roadwayID, and begin_post to maintain the structure of the input files. As output file is already sorted by roadway, it has to be sorted by begin_post only. First, segments that belong to a roadway are saved into a list and then these are sorted by begin_post. Sorted segments are then written to the output with corresponding roadwayIDs. This process is repeated for all roadways until end of the file is reached.

Step 11: Remove Curves

RCI data for curves contain begin and end posts of the curved segments. Therefore, first, process of 'combining two attributes' (step 10) is used to combine curve segments as an attribute to the segments. Additionally, in this process, an indicator 'curve' is assigned to the segments with ' 1 ' for a curved segment and ' 0 ' otherwise. Afterwards, segments that have indicator values as ' 1 ' are removed. This step is illustrated in Figure A.8.

Figure A. 8 - Remove curves
Following Table A. 7 provides statistics on the loss of segments during this step:

Table A. 7 - Curve statistics

Segments	$\mathbf{2 0 0 8}$	$\mathbf{2 0 0 7}$	$\mathbf{2 0 0 6}$	$\mathbf{2 0 0 5}$
With Curves	56252	49668	48552	47320
Without Curves	40259	34195	33320	32510
Curves	15993	15473	15232	14810
\%	$\mathbf{2 8 . 4 3}$	$\mathbf{3 1 . 1 5}$	$\mathbf{3 1 . 3 7}$	$\mathbf{3 1 . 3 0}$

Step 12: Intersections

Objective of this step is to make sure that there are no intersections within a segment. Therefore, all intersections are kept at the edge of the segment by breaking the segment at the milepost of the intersection. Also, before using the intersection file, it is sorted by ROADWAYID, and MILEPOST. Following example, Figure A.9, demonstrates the process:

Figure A. 9 - Intersections

Step 13: Map Light Poles

Light pole data extracted from the RCI database provides number of light poles for a length of the segment. So, first, light pole densities (no. of milepost per mile) are calculated for all segments. Then these light pole densities are assigned to the segments, obtained in the previous step, by using the weighted average method. Below are few examples explaining the assignment of light pole density to a segment:

Figure A. 10 - Map light poles - example 1
For the above, density $=[\mathrm{P} 1 *(\mathrm{~L} 2-\mathrm{L} 1)+\mathrm{P} 2 *(\mathrm{~S} 2-\mathrm{L} 2)] /[\mathrm{S} 2-\mathrm{S} 1]$

Figure A. 11 - Map light poles - example 2 In this case, density $=[\mathrm{P} 1 *(\mathrm{~L} 2-\mathrm{L} 1)] /[\mathrm{S} 2-\mathrm{S} 1]$

Figure A. 12 - Map light poles - example3
In this case, density $=$ P1

Step 14: Map Intersections to Segments

As in Step 12, homogenous segments are already broken at the intersections; a segment can have maximum 2 intersections - both at the ends. Count of intersections on a segment is further used to determine if segment is lit. Intersections are mapped using the similar algorithm as in crashes, explained in step 15. Also, before using the intersection file, it is sorted by ROADWAYID, and MILEPOST.

Step 15: Map Crashes to Segments

This step maps crashes to the homogenous segments obtained in last step. Before using the crash file, it is sorted by ROADWAYID, and MILEPOST. The step is performed in three stages. First, using the variable 'SITELOCA' in the crash file, intersection related crashes are removed. This is achieved by removing crashes with 'SITELOCA' $=2$ (at intersection) and 'SITELOCA' $=7$ (influenced by intersection). Second, in the output file, for all crashes within a roadway an index is generated from n to 1 . Where n is the total no. of crashes within a roadway. Index helps in identifying the last crash point on a roadway. Finally, third, these crashes are mapped to the homogenous segments.
Process, first, for a segment in the segment file looks into the crash file for a crash point with the same roadwayID. If found, it makes sure that crash milepost is between begin and end mileposts of the segment. If yes, it counts this crash point as on the segment; else goes to next crash point without mapping the crash point. While moving to the next crash point, it also makes sure that roadwayID is same and crash index is higher than 1 otherwise it exits the crash file and moves to next segment. This is repeated until last segment is reached in the segment file. Moreover, information of highest injury severity is stored by using variable 'HIGHESTINJ' in the crash file. Following are the values associated with this variable:

0 - Not coded
1 - No injury
2 - Possible injury
3 - Non-incapacitating injury
4 - Incapacitating injury
5 - Fatality (within 30 days)
6 - Nontraffic fatal
Following Table A. 8 shows statistics on mapped crashes.
Table A.8 - Crash statistics

Crashes	2005		2006		2007		$\mathbf{2 0 0 8}$	
	Count	$\mathbf{\%}$	Count	$\mathbf{\%}$	Count	$\mathbf{\%}$	Count	$\mathbf{\%}$
Intersection Related	88448	52.77	82513	51.64	80183	49.47	75721	49.84
Mapped	59271	35.37	57914	36.24	60586	37.38	56354	37.09
No Mapped	19876	11.86	19362	12.12	21330	13.16	19860	13.07
Total	$\mathbf{1 6 7 5 9 5}$	$\mathbf{1 0 0}$	$\mathbf{1 5 9 7 8 9}$	$\mathbf{1 0 0}$	$\mathbf{1 6 2 0 9 9}$	$\mathbf{1 0 0}$	$\mathbf{1 5 1 9 3 5}$	$\mathbf{1 0 0}$

FINAL OUTPUT:

Following is the structure of the final output file:

COUNTY	ROADWAY	BEGIN_POST	END_POST	MEDIAN_TYPE	ATTRIBUTES	LIGHT POLE DENSITIES	INTERSECTIONS	CRASHES

Final output has following attributes: NoLanes, SurfWidth, FunClass, AADT, MaxSpeed, MedWidth, ShldType, ShldType2, ShldType3, RoadMedian, TypePark, ShldWidth, ShldWidth2, ShldWidth3, UrbSize, LandUse, TypePark, BikeLaneCd, and BikeSltCd. Other than total crash counts, crashes are categorized in following levels: NoInj (Cat. O), PossInj (Cat. C), NoInCapInj (Cat. B), InCapInj (Cat. A) Fatality (Cat. K), NonTraffFat, and NotCoded.

APPENDIX B: FLORIDA-SPECIFIC CRASH DISTRIBUTIONS

The Tables in the HSM which give default crash type distributions to be used in the calculation of CMFs are Table 10-4 and Table 11-6. Table 10-12, Table 11-19, and Table 12-23 in the HSM give nighttime crash proportions for use in calculating the lighting CMF.

The HSM specifies that local crash distributions can be used to replace the default crash distributions provided in the HSM. Table B-1 compares the Florida crash type distributions for rural two-lane roads to the HSM default distributions given in Table 10-4 of the HSM. Table B2 shows the sum of the proportions from Table B-1 that are relevant to CMF calculation in Chapter 10 of the HSM. Table B-3 compares the Florida crash type distributions for KABC severity level crashes on rural multilane highways to the HSM default distributions given in Table 11-6 of the HSM. Table B-4 shows the sum of the proportions from Table B-3 that are relevant to CMF calculation in Chapter 11 of the HSM. Table B-5 and Table B-6 also compare crash type proportions for rural multilane highways, but only including crashes of KAB severity levels. Table B-7 displays the Florida nighttime crash proportions by facility type.

In order to determine the Florida crash distributions, the same crashes that were mapped to each segment for calibration were used. The "Harmful Event" variable from the vehicle level crash report, in addition to the number of vehicles involved in the crash, were used to identify the crash type. Table B-8 shows how the crash types defined in the "Harmful Event" variable were mapped to the HSM crash types.

TABLE B-1. Florida Crash Distribution for Rural Two-Lane Roads

Collision Type	$\mathbf{2 0 0 5}$	$\mathbf{2 0 0 6}$	$\mathbf{2 0 0 7}$	$\mathbf{2 0 0 8}$	HSM FI Proportions
Animal	0.032	0.027	0.037	0.043	0.038
Bicycle	0.000	0.001	0.001	0.001	0.004
Pedestrian	0.011	0.009	0.013	0.014	0.007
Overturned	0.092	0.111	0.125	0.101	0.037
Run off road	0.317	0.302	0.340	0.337	0.545
Other Single	0.031	0.030	0.032	0.028	0.007
Total Single Vehicle	$\mathbf{0 . 4 8 3}$	$\mathbf{0 . 4 8 0}$	$\mathbf{0 . 5 4 8}$	$\mathbf{0 . 5 2 4}$	$\mathbf{0 . 6 3 8}$
Angle	0.147	0.161	0.141	0.140	0.101
Head-on	0.053	0.052	0.043	0.051	0.034
Rear-end	0.202	0.183	0.186	0.178	0.165
Sideswipe	0.053	0.052	0.040	0.046	0.038
Other Multivehicle	0.059	0.071	0.043	0.062	0.026
Total Multivehicle	$\mathbf{0 . 5 1 4}$	$\mathbf{0 . 5 1 9}$	$\mathbf{0 . 4 5 3}$	$\mathbf{0 . 4 7 7}$	$\mathbf{0 . 3 6 2}$

TABLE B-2. Rural Two-Lane Florida Crash Proportion Used for CMF Calculation

Proportion Used for CMF Calculation	Head-on, Sideswipe, and Single Vehicle Run-off-the-Road Crashes				
	$\mathbf{2 0 0 5}$	$\mathbf{2 0 0 6}$	$\mathbf{2 0 0 7}$	$\mathbf{2 0 0 8}$	HSM FI Default
p_{ra} for $\mathrm{CMF}_{1 \mathrm{r}}$	0.423	0.406	0.423	0.434	0.617
p_{ra} for $\mathrm{CMF}_{2 \mathrm{r}}$					

TABLE B-3. KABC Florida Crash Distribution on Rural Multilane Divided Highways

Collision type	$\mathbf{2 0 0 5}$	$\mathbf{2 0 0 6}$	$\mathbf{2 0 0 7}$	$\mathbf{2 0 0 8}$	HSM FI Proportions
Head-on	0.018	0.021	0.021	0.013	0.013
Sideswipe	0.048	0.055	0.042	0.031	0.027
Rear-end	0.228	0.226	0.180	0.214	0.163
Angle	0.115	0.113	0.127	0.099	0.048
Single - non run off the road	0.359	0.347	0.375	0.395	0.727
Single - run off the road	0.142	0.154	0.159	0.167	
Other	0.090	0.084	0.097	0.081	0.022

TABLE B-4. KABC Florida Crash Proportion Used for CMF Calculation on Rural Multilane Divided Highways

Proportion of Crashes for CMF Calculation	Head-on, Sideswipe, and Single Vehicle Run-off-the-Road Crashes				
	$\mathbf{2 0 0 5}$	$\mathbf{2 0 0 6}$	$\mathbf{2 0 0 7}$	$\mathbf{2 0 0 8}$	HSM FI Default
$p_{\text {ra }}$ for $\mathrm{CMF}_{1 \mathrm{rd}}$	0.208	0.230	0.222	0.211	0.467

TABLE B-5. KAB Florida Crash Distribution on Rural Multilane Divided Highways

Collision type	$\mathbf{2 0 0 5}$	$\mathbf{2 0 0 6}$	$\mathbf{2 0 0 7}$	$\mathbf{2 0 0 8}$	HSM FI Proportions
Head-on	0.019	0.023	0.027	0.015	0.018
Sideswipe	0.046	0.042	0.036	0.023	0.022
Rear-end	0.210	0.191	0.163	0.189	0.114
Angle	0.110	0.113	0.124	0.101	0.045
Single - non run off the road	0.357	0.365	0.366	0.395	0.778
Single - run off the road	0.173	0.187	0.188	0.194	
Other	0.085	0.079	0.096	0.084	0.023

TABLE B-6. KAB Florida Crash Proportion Used for CMF Calculation on Rural Multilane Divided Highways

Proportion of Crashes for CMF Calculation	Head-on, Sideswipe, and Single Vehicle Run-off-the-Road Crashes				
	$\mathbf{2 0 0 5}$	$\mathbf{2 0 0 6}$	$\mathbf{2 0 0 7}$	$\mathbf{2 0 0 8}$	HSM FI Default
p_{ra} for $\mathrm{CMF}_{1 \mathrm{rd}}$	0.238	0.252	0.251	0.232	0.497

TABLE B-7. Florida Proportion of Fatal and Injury Crashes that Occur at Night

Facility Type	$\mathbf{2 0 0 5}$	$\mathbf{2 0 0 6}$	$\mathbf{2 0 0 7}$	$\mathbf{2 0 0 8}$	HSM Default
Rural Two-Lane	0.331	0.352	0.375	0.367	0.370
Rural Multilane Divided	0.318	0.329	0.338	0.323	0.426
Urban Two-Lane	0.289	0.295	0.307	0.304	0.316
Urban Three-Lane	0.257	0.246	0.316	0.283	0.304
Urban Four-Lane Undivided	0.254	0.266	0.239	0.229	0.365
Urban Four-Lane Divided	0.253	0.268	0.259	0.269	0.410
Urban Five-Lane	0.239	0.227	0.231	0.232	0.274

TABLE B-8. Harmful Event Converted to HSM Crash Types

$\begin{gathered} \text { Even } \\ \text { t } \\ \text { Code } \end{gathered}$	Event Description	HSM Crash Type for Rural Two Lane	HSM Crash Type for Rural Multilane
01	Collision With MV in Transport (Rear-end)	Rear-end	Rear-end
02	Collision With MV in Transport (Head-on)	Head-on	Head-on
03	Collision With MV in Transport (Angle)	Angle	Angle
04	Collision With MV in Transport (Left Turn)	Angle	Angle
05	Collision With MV in Transport (Right Turn)	Angle	Angle
06	Collision With MV in Transport (Sideswipe)	Sideswipe	Sideswipe
07	Collision With MV in Transport (Backed Into)	Other multivehicle	Other
08	Collision With Parked Car	Run off road	Single - run off the road
09	Collision With MV on Other Roadway	Other multivehicle	Other
10	Collision With Pedestrian	Pedestrian	Single - non run off the road
11	Collision With Bicycle	Bicycle	Single - non run off the road
12	Collision With Bicycle (Bike Lane)	Bicycle	Single - non run off the road
13	Collision With Moped	Other multivehicle	Other
14	Collision With Train	Other single vehicle	Single - non run off the road
15	Collision With Animal	Animal	Single - non run off the road
16	MV Hit Sign/Sign Post	Run off road	Single - run off the road
17	MV Hit Utility Pole/Light Pole	Run off road	Single - run off the road
18	MV Hit Guardrail	Run off road	Single - run off the road
19	MV Hit Fence	Run off road	Single - run off the road
20	MV Hit Concrete Barrier Wall	Run off road	Single - run off the road
21	MV Hit Bridge/Pier/Abutment Rail	Run off road	Single - run off the road
22	MV Hit Tree/Shrubbery	Run off road	Single - run off the road
23	Collision With Construction Barricade/Sign	Run off road	Single - run off the road
24	Collision With Traffic Gate	Other single vehicle	Single - non run off the road
25	Collision With Crash Attenuators	Run off road	Single - run off the road
26	Collision With Fixed Object Above Road	Other single vehicle	Single - non run off the road
27	MV Hit Other Fixed Object	Run off road	Single - run off the road
28	Collision With Moveable Object On Road	Other single vehicle	Single - non run off the road
29	MV Ran Into Ditch/Culvert	Run off road	Single - run off the road
30	Ran Off Road Into Water	Run off road	Single - run off the road
31	Overturned	Other single vehicle	Single - non run off the road
32	Occupant Fell From Vehicle	Other single vehicle	Single - non run off the road
33	Tractor/Trailer Jackknifed	Other single vehicle	Single - non run off the road
34	Fire	Other single vehicle	Single - non run off the road
35	Explosion	Other single vehicle	Single - non run off the road
36	Downhill Runaway	Other single vehicle	Single - non run off the road
37	Cargo Loss or Shift	Other single vehicle	Single - non run off the road
38	Separation of Units	Other single vehicle	Single - non run off the road
39	Median Crossover	Run off road	Single - run off the road
77	All Other (Explain)	Other Single/Multi	Other
88	Unknown	Removed from analysis	Removed from analysis
00	N/A	Removed from analysis	Removed from analysis

APPENDIX C: FLORIDA BIKE LANE CALIBRATION

Bike lane mileage is growing at a rapid rate in Florida, as it is now standard practice to accommodate bicycles in any new construction or resurfacing projects. CMFs for bike lanes are available through the CMF clearinghouse website, which is funded by the Federal Highway Administration and maintained by the University of North Carolina Highway Safety Research Center (11). However, none of these CMFs have a quality rating greater than three out of five stars, and the general trend shows an increase in both total crashes and fatal and injury crashes with the presence of bike lanes, contradicting the trend stated in Part D of the HSM. CMFs for dedicated bike lanes are not given in the Part C crash prediction section of the HSM or in the Part D CMF section; however, it is noted that there is a trend of decreased total crashes and bicycle crashes on segments with dedicated bike lanes (1).

Rather than develop a local CMF for the presence of bike lanes, the approach taken simply considers facilities with bike lanes as a separate facility type. The urban and suburban four-lane divided facility type had the highest presence of bike lanes, so these segments were split into two categories, with and without bike lanes, for calibration comparison. Table C-1 shows the calculated calibration factors of the two newly separated facility types in comparison with the original facility type categorization that did not take bike lanes into account. In 2005, the bike lane mileage was significantly less and there were not enough fatal and injury crashes for calibration factor computation. Although not evident in 2007, 2006 and 2008 each show a much lower calibration factor for segments with bike lanes. Potential reasons for this reduction in expected crashes include wider effective shoulder widths, lower speeds, driver behavior, or improved pavement conditions on what are possibly newly resurfaced roads. Further research is needed in this area to determine the safety impact of bike lanes, and how bike lanes can be included in HSM analysis.

TABLE C-1. Calibration Comparison for Bike Lane Facilities

Segment Description	Calibration Factor by Year		
	$\mathbf{2 0 0 6}$	$\mathbf{2 0 0 7}$	$\mathbf{2 0 0 8}$
Urban and Suburban Four-Lane Divided Segments with Bike Lanes			
Number of Segments	443	534	899
Total Length (mi.)	40.9	50.4	83.4
Total Observed Crashes	92	129	187
Calibration Factor	1.395	1.652	1.344
Urban and Suburban Four-Lane Divided Segments without Bike Lanes			
Number of Segments	7063	6972	6607
Total Length (mi.)	929.7	920.2	887.3
Total Observed Crashes	2742	2787	2595
Calibration Factor	1.620	1.653	1.625
All Urban and Suburban Four-Lane Divided Segments			
Calibration Factor for all Segments	1.611	1.653	1.602

APPENDIX D: SENSITIVITY ANALYSIS TABLES

Table D-1. KABC Rural Two-Lane Sensitivity Analysis

Assumptions		Difference in Crashes per Mile					
Driveway Density (driveways/mi.)	Roadside Hazard Rating	Minimu \mathbf{m}	$\mathbf{5 \%}$	Mean	$\mathbf{9 5 \%}$	Maximu \mathbf{m}	Standard Deviatio \mathbf{n}
5	3	-	-	-	-	-	-
5	1	-0.31	-0.14	-0.06	-0.02	0.00	-0.040
5	5	0.01	0.02	0.07	0.16	0.35	0.047
10	1	-0.31	-0.10	-0.02	0.00	0.00	0.039
10	3	0.00	0.02	0.04	0.05	0.07	0.010
10	5	0.01	0.05	0.11	0.21	0.35	0.051
2.5	1	-0.30	-0.14	-0.06	-0.02	0.00	0.040
2.5	3	0.00	0.00	0.00	0.00	0.03	0.002
2.5	5	0.01	0.02	0.07	0.16	0.37	0.047

Table D-2. KAB Rural Two-Lane Sensitivity Analysis

Assumptions		Difference in Crashes per Mile					
Driveway Density (driveways/mi.)	Roadside Hazard Rating	Minimu \mathbf{m}	$\mathbf{5 \%}$	Mean	$\mathbf{9 5 \%}$	Maximu \mathbf{m}	Standard Deviatio \mathbf{n}
5	3	-	-	-	-	-	-
5	1	-0.21	-0.09	-0.04	-0.01	0.00	0.027
5	5	0.00	0.01	0.05	0.11	0.24	0.031
10	1	-0.21	-0.07	-0.02	0.00	0.00	0.026
10	3	0.00	0.01	0.03	0.03	0.05	0.007
10	5	0.01	0.03	0.07	0.14	0.24	0.034
2.5	1	-0.20	-0.09	-0.04	-0.01	0.00	0.027
2.5	3	0.00	0.00	0.00	0.00	0.02	0.001
2.5	5	0.00	0.01	0.05	0.11	0.24	0.031

Table D-3. Urban and Suburban Two-Lane Sensitivity Analysis

Assumptions		Difference in Crashes per Mile					
Driveway Density (driveways/mi.)	Roadside Fixed Objects (objects/mi.)	Minimu \mathbf{m}	$\mathbf{5 \%}$	Mean	$\mathbf{9 5 \%}$	Maximu \mathbf{m}	Standard Deviatio \mathbf{n}
$\mathbf{2 9 . 3 7}$	$\mathbf{1 4 . 7 1}$	-	-	-	-	-	-
29.37	29.41	0.01	0.03	0.10	0.21	1.28	0.063
14.69	14.71	-2.38	-0.70	-0.37	-0.12	-0.03	0.196
14.69	29.41	-1.26	-0.55	-0.29	-0.09	-0.02	0.147
58.74	14.71	0.06	0.23	0.74	1.39	4.77	0.393
58.74	29.41	0.07	0.28	0.88	1.69	6.33	0.478

Table D-4. Urban and Suburban Three-Lane Sensitivity Analysis

Assumptions		Difference in Crashes per Mile					
Driveway Density (driveways/mi.)	Roadside Fixed Objects (objects/mi.)	Minimu \mathbf{m}	$\mathbf{5 \%}$	Mean	$\mathbf{9 5 \%}$	Maximu \mathbf{m}	Standard Deviatio \mathbf{n}
$\mathbf{3 5 . 9 8}$	$\mathbf{1 4 . 7 1}$	-	-	-	-	-	-
35.98	29.41	0.01	0.02	0.07	0.13	0.16	0.032
17.99	14.71	-0.68	-0.46	-0.28	-0.09	-0.06	0.111
17.99	29.41	-0.54	-0.36	-0.22	-0.08	-0.05	0.083
71.95	14.71	0.12	0.18	0.56	0.92	1.35	0.222
71.95	29.41	0.14	0.20	0.64	1.07	1.56	0.261

Table D-5. Urban and Suburban Four-Lane Undivided Sensitivity Analysis

Assumptions		Difference in Crashes per Mile					
Driveway Density (driveways/mi.)	Roadside Fixed Objects (objects/mi.)	Minimu \mathbf{m}	$\mathbf{5 \%}$	Mean	$\mathbf{9 5 \%}$	Maximu \mathbf{m}	Standard Deviatio \mathbf{n}
$\mathbf{4 4 . 4 3}$	$\mathbf{1 4 . 7 1}$	-	-	-	-	-	-
44.43	29.41	0.01	0.04	0.13	0.26	0.63	0.078
22.22	14.71	-4.48	-1.85	-0.95	-0.29	-0.09	0.553
22.22	29.41	-4.02	-1.66	-0.86	-0.26	-0.08	0.495
88.86	14.71	0.19	0.58	1.91	3.70	8.97	1.105
88.86	29.41	0.21	0.64	2.11	4.10	9.93	1.224

Table D-6. Urban and Suburban Four-Lane Divided Sensitivity Analysis

Assumptions		Difference in Crashes per Mile					
Driveway Density (driveways/mi.)	Roadside Fixed Objects (objects/mi.)	Minimu \mathbf{m}	$\mathbf{5 \%}$	Mean	$\mathbf{9 5 \%}$	Maximu \mathbf{m}	Standard Deviatio \mathbf{n}
$\mathbf{1 3 . 8 7}$	$\mathbf{1 4 . 7 1}$	-	-	-	-	-	-
13.87	29.41	0.00	0.04	0.11	0.20	0.42	0.053
6.94	14.71	-0.42	-0.20	-0.12	-0.04	-0.01	0.052
6.94	29.41	-0.02	-0.02	-0.01	-0.01	0.01	0.003
27.74	14.71	0.01	0.08	0.23	0.40	0.83	0.104
27.74	29.41	0.02	0.12	0.35	0.62	1.28	0.161

Table D-7. Urban and Suburban Five-Lane Sensitivity Analysis

Assumptions		Difference in Crashes per Mile					
Driveway Density (driveways/mi.)	Roadside Fixed Objects (objects/mi.)	Minimu \mathbf{m}	$\mathbf{5 \%}$	Mean	$\mathbf{9 5 \%}$	Maximu \mathbf{m}	Standard Deviatio \mathbf{n}
$\mathbf{4 0 . 6 2}$	$\mathbf{1 4 . 7 1}$	-	-	-	-	-	-
40.62	29.41	0.01	0.03	0.07	0.11	0.15	0.025
20.31	14.71	-1.87	-1.28	-0.75	-0.31	-0.09	0.310
20.31	29.41	-1.74	-1.20	-0.70	-0.28	-0.08	0.290
81.24	14.71	0.18	0.62	1.51	2.56	3.73	0.620
81.24	29.41	0.19	0.66	1.59	2.71	3.95	0.655

APPENDIX E: GEOGRAPHIC SEGMENTATION

Table E-1. Rural 4-Lane Divided District Calibration

District	Average Crashes/Year	$\mathbf{C}_{\mathbf{d}} / \mathbf{C}_{\mathbf{0}}$				
		$\mathbf{2 0 0 5}$	$\mathbf{2 0 0 6}$	$\mathbf{2 0 0 7}$	$\mathbf{2 0 0 8}$	Avg.
D1	115.5	0.91	1.08	0.90	1.11	1.00
D2	117	0.81	0.83	1.01	0.79	0.86
D3	49.25	0.76	0.78	0.93	0.96	0.86
D4	65.25	1.65	1.41	1.23	1.38	1.42
D5	190	1.15	1.06	0.99	0.99	1.05
D6	14.75	1.33	1.06	2.12	1.22	1.43
D7	24.75	0.73	0.84	0.82	0.97	0.84

Table E-2. Urban 2-Lane Undivided District Calibration

District	Average Crashes/Year	$\mathbf{C}_{\mathbf{d}} / \mathbf{C}_{\mathbf{0}}$				
		$\mathbf{2 0 0 5}$	$\mathbf{2 0 0 6}$	$\mathbf{2 0 0 7}$	$\mathbf{2 0 0 8}$	Avg.
D1	144.5	1.21	1.26	1.11	0.96	1.14
D2	116	0.89	1.03	0.87	1.08	0.96
D3	158.5	1.02	0.92	1.06	1.00	1.00
D4	76.5	0.73	0.82	0.89	0.77	0.81
D5	127.5	0.74	0.80	0.69	0.87	0.78
D6	96	0.80	0.79	0.94	0.70	0.81
D7	205	1.58	1.37	1.41	1.52	1.47

Table E-3. Urban 3-Lane District Calibration

District	Average Crashes/Year	$\mathbf{C}_{\mathbf{d}} / \mathbf{C}_{\mathbf{0}}$				
		2005	2006	2007	2008	Avg.
D1		1.25	1.50	1.16	1.34	1.31
D2	8.5	0.47	0.41	1.39	1.05	0.83
D3	21.5	1.05	1.24	1.13	0.95	1.09
D4	14.5	0.67	0.34	0.65	0.85	0.63
D5	27	1.50	1.12	1.18	1.19	1.25
D6	6.75	0.46	0.83	0.28	0.46	0.51
D7	21.5	1.26	1.50	1.32	1.15	1.31

Table E-4. Urban 4-Lane Undivided District Calibration

District	Average Crashes/Year	$\mathbf{C}_{\mathbf{d}} / \mathbf{C}_{\mathbf{0}}$				
		$\mathbf{2 0 0 5}$	$\mathbf{2 0 0 6}$	$\mathbf{2 0 0 7}$	$\mathbf{2 0 0 8}$	Avg.
D1	37	1.19	1.61	0.87	1.09	1.19
D2	44.75	0.85	0.73	0.79	0.93	0.82
D3	52.25	1.38	1.26	0.80	0.77	1.05
D4	41	0.71	0.76	0.87	1.01	0.84
D5	60.25	1.35	1.12	1.42	1.10	1.25
D6	38	0.56	0.65	1.13	0.90	0.81
D7	56.25	1.06	1.13	1.10	1.23	1.13

Table E-5. Urban 5-Lane District Calibration

District	Average Crashes/Year	$\mathbf{C}_{\mathbf{d}} / \mathbf{C}_{\mathbf{0}}$				
		$\mathbf{2 0 0 5}$	$\mathbf{2 0 0 6}$	$\mathbf{2 0 0 7}$	$\mathbf{2 0 0 8}$	Avg.
D1		0.84	0.90	1.01	0.60	0.84
D2	182.00	1.12	1.32	1.25	1.45	1.29
D3	170.25	1.17	1.13	1.08	1.00	1.10
D4	119.25	1.02	0.96	1.08	0.99	1.02
D5	301.00	1.00	0.93	0.92	1.00	0.96
D6	81.00	0.62	0.80	0.76	0.83	0.75
D7	69.25	1.22	0.90	0.88	0.99	1.00

Above are the detailed results for the FDOT District Geographic Segmentation analysis performed for each facility type not described in section 2.5.1.

Table E-6. Rural 4 Lane KABC Population Density-Calibration

District	Average Crashes/Year	$\mathbf{C}_{\mathbf{g}} / \mathbf{C}_{\mathbf{o}}$				
		$\mathbf{2 0 0 5}$	$\mathbf{2 0 0 6}$	$\mathbf{2 0 0 7}$	$\mathbf{2 0 0 8}$	Avg.
G1	52.50	1.20	1.05	1.26	1.12	1.16
G2	89.25	1.17	1.11	1.20	1.39	1.22
G3	305.75	0.99	0.99	0.89	0.93	0.95
G4	129.00	0.87	0.96	1.07	0.92	0.95

Table E-7. Urban 2 Lane Undivided KABC Population Density-Calibration

District	Average Crashes/Year	$\mathbf{C}_{\mathbf{g}} / \mathbf{C}_{\mathbf{0}}$				
		$\mathbf{2 0 0 5}$	$\mathbf{2 0 0 6}$	$\mathbf{2 0 0 7}$	$\mathbf{2 0 0 8}$	Avg.
G1		1.13	1.16	1.28	1.20	1.19
G2	280.75	1.03	0.94	0.95	0.98	0.98
G3	207.00	0.89	1.01	0.83	0.92	0.91
G4	132.50	0.91	0.89	0.96	0.80	0.89

Table E-8. Urban 3 Lane KABC Population Density-Calibration

District	Average Crashes/Year	$\mathbf{C}_{\mathbf{g}} / \mathbf{C}_{\mathbf{0}}$				
		$\mathbf{2 0 0 5}$	$\mathbf{2 0 0 6}$	$\mathbf{2 0 0 7}$	$\mathbf{2 0 0 8}$	Avg.
G1	31.25	1.64	1.29	1.86	1.95	1.69
G2	31.75	0.74	0.94	0.91	0.66	0.81
G3	34.00	1.31	1.16	0.77	1.17	1.10
G4	17.50	0.59	0.70	0.83	0.70	0.70

Table E-9. Urban 4 Lane Undivided KABC Population Density-Calibration

District	Average Crashes/Year	$\mathbf{C}_{\mathbf{g}} / \mathbf{C}_{\mathbf{0}}$				
		$\mathbf{2 0 0 5}$	$\mathbf{2 0 0 6}$	$\mathbf{2 0 0 7}$	$\mathbf{2 0 0 8}$	Avg.
G1	181.25	0.85	0.89	1.03	1.04	0.95
G2	102.00	1.31	1.41	0.83	0.94	1.12
G3	20.50	0.82	0.62	0.91	0.74	0.78
G4	17.75	1.19	0.66	1.43	0.93	1.05

Table E-10. Urban 3 Lane KABC Population Density-Calibration

District	Average Crashes/Year	$\mathbf{C}_{\mathbf{g}} / \mathbf{C}_{\mathbf{o}}$				
		$\mathbf{2 0 0 5}$	$\mathbf{2 0 0 6}$	$\mathbf{2 0 0 7}$	$\mathbf{2 0 0 8}$	Avg.
G1		0.95	1.15	1.14	1.19	1.11
G2	270.75	0.94	0.92	0.85	0.83	0.88
G3	243.75	1.17	0.90	0.97	0.87	0.98
G4	27.00	1.17	0.78	1.21	1.58	1.18

The above tables show the results for the remaining facility types not discussed in section 2.5.2 (Segmentation by Population Density). The reader will note that in cases where sufficient data is available, these results also appear to support the trend of higher group-to-overall factor ratios in counties with higher population density.

APPENDIX F: INTERSECTION LOCATIONS

Figure F-1. Rural Two-Lane, 3-Approach Stop

Table F-1. Rural Two-Lane, Three-Approach Stop Controlled Intersections.

County ID	Node ID	Latitude Coordinates	Longitude Coordinates	Major Roadway ID	Major Road Milepost	2nd Roadway ID	2nd Road Milepost
32	145	30.5242094	-82.96076161	$\begin{gathered} 3201000 \\ 0 \end{gathered}$	19.9	$\begin{gathered} 3204000 \\ 0 \\ \hline \end{gathered}$	0
33	68	29.95016456	-82.94897283	$\begin{gathered} 3301000 \\ 0 \end{gathered}$	29.764	$\begin{gathered} 3303000 \\ 0 \end{gathered}$	8.724
16	304	27.70471097	-82.02020218	$\begin{gathered} 1619000 \\ 0 \end{gathered}$	2.128	$\begin{gathered} 1625000 \\ 0 \end{gathered}$	4.547
28	149	29.88851179	-82.336908	$\begin{gathered} 2804000 \\ 0 \\ \hline \end{gathered}$	5.708	$\begin{gathered} 2806000 \\ 0 \end{gathered}$	0.657
5	4	26.8124745	-81.4127828	5040000	0	5090000	2.505
60	205	30.47161729	-85.96237612	$\begin{gathered} 6003000 \\ 0 \end{gathered}$	27.427	$\begin{gathered} 6010000 \\ 0 \\ \hline \end{gathered}$	0
3	67	26.48555655	-81.43465589	3050000	7.058	3080000	42.798
57	405	30.75071757	-86.63689398	$\begin{gathered} 5701000 \\ 0 \\ \hline \end{gathered}$	10.559	$\begin{gathered} 5708000 \\ 0 \\ \hline \end{gathered}$	12.709
56	98	30.3883142	-84.68465259	$\begin{gathered} 5601000 \\ 0 \end{gathered}$	19.353	$\begin{gathered} 5605000 \\ 0 \end{gathered}$	0
7	44	26.75421839	-81.08169881	7010000	31.822	7030000	12.259
13	710	27.58998253	-82.11873337	$\begin{gathered} 1306000 \\ 0 \end{gathered}$	19.226	$\begin{gathered} 1307000 \\ 0 \end{gathered}$	0
51	132	29.78224021	-85.30038014	$\begin{gathered} 5101000 \\ 0 \end{gathered}$	0	$\begin{gathered} 5107000 \\ 0 \end{gathered}$	9.199
59	17	30.08408462	-84.38755983	$\begin{gathered} 5901000 \\ 0 \end{gathered}$	7.815	$\begin{gathered} 5903000 \\ 0 \end{gathered}$	11.543
50	158	30.59288642	-84.66872638	$\begin{gathered} 5005000 \\ 0 \\ \hline \end{gathered}$	11.185	$\begin{gathered} 5007000 \\ 0 \end{gathered}$	10.587
39	142	30.07039291	-82.22426087	$\begin{gathered} 3902000 \\ 0 \end{gathered}$	17.565	$\begin{gathered} 3904000 \\ 0 \end{gathered}$	0
37	29	29.95576735	-82.92766637	$\begin{gathered} 3703000 \\ 0 \end{gathered}$	0.08	$\begin{gathered} 3704000 \\ 0 \end{gathered}$	0
49	73	29.75757555	-84.83316345	$\begin{gathered} 4901000 \\ 0 \\ \hline \end{gathered}$	17.543	$\begin{gathered} 4906000 \\ 0 \\ \hline \end{gathered}$	0
59	149	30.19973726	-84.1835265	$\begin{gathered} 5910000 \\ 0 \end{gathered}$	16.631	$\begin{gathered} 5911000 \\ 0 \end{gathered}$	14.244
35	185	30.46238027	-83.40989343	$\begin{gathered} 3506000 \\ 0 \end{gathered}$	5.999	$\begin{gathered} 3507000 \\ 0 \\ \hline \end{gathered}$	16.457
59	22	30.10471275	-84.38031056	$\begin{gathered} 5901000 \\ 0 \end{gathered}$	9.337	$\begin{gathered} 5911000 \\ 0 \end{gathered}$	0
29	403	30.00370723	-82.59735356	$\begin{gathered} 2903000 \\ 0 \\ \hline \end{gathered}$	10.414	$\begin{gathered} 2908000 \\ 0 \\ \hline \end{gathered}$	0
47	93	30.45027144	-85.04585477	$\begin{gathered} 4702000 \\ 0 \end{gathered}$	21.475	$\begin{gathered} 4703000 \\ 0 \end{gathered}$	0
16	615	28.24807102	-82.05571616	$\begin{gathered} 1621000 \\ 0 \end{gathered}$	16.308	$\begin{gathered} 1633000 \\ 0 \end{gathered}$	0
47	54	30.23500496	-85.20811644	$\begin{gathered} 4702000 \\ 0 \end{gathered}$	2.46	$\begin{gathered} 4704000 \\ 0 \end{gathered}$	0
39	79	29.93167755	-82.42322048	$\begin{gathered} 3902000 \\ 0 \end{gathered}$	0.65	$\begin{gathered} 3907000 \\ 0 \\ \hline \end{gathered}$	0
51	202	29.68620187	-85.30909621	$\begin{gathered} 5100100 \\ 0 \end{gathered}$	0	$\begin{gathered} 5150200 \\ 0 \end{gathered}$	5.803
53	1264	30.95091404	-85.41071626	5307000	7.643	5307000	0

				0		1	
50	816	30.62031387	-84.42476083	5002000 0	10.502	5004002 7	0.165
31	8001	29.59088138	-82.92638729	3101000 0	0	3104000 0	0.612
31	48	29.61853541	-82.81839836	3103000 0	2.44	3105000 0	0
13	658	27.47456889	-82.30773985	1305000 0	16.835	1314000 0	0
11	1079	29.03987545	-81.64013716	110000 0	12.772	1119000 0	0.569
4	34	27.22557903	-81.88865271	4040000	11.486	4060000	10.991
8	275	28.50713209	-82.15435828	8060000	2.049	8070000	9.519
54	2	30.18958277	-84.04963918	5409000 0	0	541000 0	1.586

Figure F-2. Rural 2-Lane, 4-Approach Signal

Table F-2. Rural Two-Lane, Four-Approach Signalized Intersections.

County ID	Node ID	Latitude Coordinates	Longitude Coordinates	Major Roadway ID	Major Road Milepost	2nd Roadway ID	2nd Road Milepost
53	285	30.87009276	-85.1623136	53090000	7.639	53130000	24.069
8	273	28.50796545	-82.17032925	8030000	2.082	8070000	8.543
46	155	30.43120237	-85.68750166	46050000	7.733	46060000	19.907
26	383	29.82697005	-82.59690285	26020064	0.619	26030000	26.189
26	331	29.53720163	-82.51911809	26030000	4.161	26090000	2.83
53	543	30.9572394	-85.5166433	53060000	8.883	53070000	1.323
79	1172	29.22518575	-81.32149868	79090000	11.586	79100000	13.117
39	32	30.02340589	-82.32414025	39010000	3.533	39020000	10.254
29	10	29.92301009	-82.71382278	29020000	4.312	29050000	7.588
14	26	28.32136015	-82.50305934	14010000	11.321	14120000	12.438
18	110	28.5551807	-82.05469984	18020000	0	18030000	4.21
53	549	30.96251742	-85.51670141	53060000	9.247	53070000	0.959
33	27	30.05305256	-83.17517595	33010000	13.592	33040000	19.157
39	27	30.02320009	-82.34417615	39010000	4.738	39050000	13.986
53	10	30.79229076	-85.37654832	53010000	4.778	53030000	16.215
16	3160	27.67786272	-81.55369897	16090000	0	16170000	2.585
76	483	29.70970936	-82.04409455	76070000	7.18	76080000	0.368
34	129	29.37431578	-82.45634057	34030000	20.192	34040000	11.013
79	980	29.18749919	-81.42122522	79050000	12.183	79100000	6.427
53	279	30.81230471	-85.17480311	53090000	3.558	53120000	21.173
53	421	30.95762163	-85.16235222	53070000	23.108	53090000	13.767
39	106	30.01793964	-82.34481057	39020000	8.86	39090000	2.499
37	41	29.95239617	-82.86072869	37030000	4.138	37070000	2.755
31	24	29.61337189	-82.81802891	31010000	7.789	31030000	2.099
78	408	29.9694542	-81.53818097	78060000	6.303	78070000	0
59	59	30.23252694	-84.22996139	59040000	5.596	59100000	12.889
61	186	30.44295219	-85.87401915	61040000	1.701	61121000	1.072
57	418	30.79716595	-86.68162628	57070000	4.592	57080000	8.117

Figure F-3. Rural 2-Lane, 4-Approach Stop

Table F-3. Rural Two-Lane, Four-Approach Stop Controlled Intersections.

County ID	Node ID	Latitude Coordinates	Longitude Coordinates	Major Roadway ID	Major Road Milepost	2nd Roadway ID	2nd Road Milepost
13	53	27.39917729	-82.30433874	$\begin{gathered} 1305000 \\ 0 \\ \hline \end{gathered}$	22.134	$\begin{gathered} 1316000 \\ 0 \\ \hline \end{gathered}$	15.567
3	29	25.91082428	-81.36452099	3010000	44.151	3040000	0
49	49	29.73620798	-84.88785937	$\begin{gathered} 4901000 \\ 0 \end{gathered}$	13.882	$\begin{gathered} 4958000 \\ 0 \end{gathered}$	5.439
79	5196	29.020481	-81.36688777	$\begin{gathered} 7907000 \\ 0 \\ \hline \end{gathered}$	1.193	$\begin{gathered} 7907000 \\ 5 \end{gathered}$	0
58	292	30.95295384	-87.15037964	$\begin{gathered} 5806000 \\ 0 \end{gathered}$	21.79	$\begin{gathered} 5808000 \\ 0 \end{gathered}$	5.446
52	165	30.97575213	-85.99784321	$\begin{gathered} 5204000 \\ 0 \end{gathered}$	20.397	$\begin{gathered} 5205000 \\ 0 \end{gathered}$	6.711
52	174	30.9317624	-85.96622841	$\begin{gathered} 5204000 \\ 0 \\ \hline \end{gathered}$	16.679	$\begin{gathered} 5205000 \\ 0 \\ \hline \end{gathered}$	6.725
14	337	28.4639742	-82.18342672	$\begin{gathered} 1405000 \\ 0 \end{gathered}$	21.161	$\begin{gathered} 1415000 \\ 0 \end{gathered}$	0
55	263	30.5235942	-84.02417802	$\begin{gathered} 5502000 \\ 0 \\ \hline \end{gathered}$	16.699	$\begin{gathered} 5515000 \\ 0 \\ \hline \end{gathered}$	0.111
52	107	30.96520458	-85.64666881	$\begin{gathered} 5203000 \\ 0 \end{gathered}$	15.568	$\begin{gathered} 5205000 \\ 0 \end{gathered}$	26.732
76	460	29.60784943	-82.02539779	$\begin{gathered} 7605000 \\ 0 \end{gathered}$	2.038	$\begin{gathered} 7607000 \\ 0 \end{gathered}$	0
35	92	30.47068145	-83.63516874	$\begin{gathered} 3501000 \\ 0 \\ \hline \end{gathered}$	6.107	$\begin{gathered} 3505000 \\ 0 \\ \hline \end{gathered}$	12.621
34	92	29.39339663	-82.44855845	$\begin{gathered} 3404000 \\ 0 \end{gathered}$	12.768	$\begin{gathered} 3408000 \\ 0 \end{gathered}$	0
49	102	29.85110891	-84.66478626	$\begin{gathered} 4901000 \\ 0 \end{gathered}$	30.26	$\begin{gathered} 4904000 \\ 0 \end{gathered}$	0
49	1	29.72066612	-85.10589913	$\begin{gathered} 4901000 \\ 0 \\ \hline \end{gathered}$	0	$\begin{gathered} 4909000 \\ 0 \\ \hline \end{gathered}$	0
58	296	30.95289972	-87.14727705	$\begin{gathered} 5806000 \\ 0 \\ \hline \end{gathered}$	21.977	$\begin{gathered} 5808000 \\ 0 \\ \hline \end{gathered}$	5.633
89	198	26.97762244	-80.61430851	$\begin{gathered} 8905000 \\ 0 \\ \hline \end{gathered}$	1.409	$\begin{gathered} 8906000 \\ 0 \\ \hline \end{gathered}$	0
54	29	30.35850095	-83.99009836	$\begin{gathered} 5406000 \\ 0 \end{gathered}$	0	$\begin{gathered} 5409000 \\ 0 \end{gathered}$	13.774
90	324	24.77256866	-80.93593908	$\begin{gathered} 9004000 \\ 0 \end{gathered}$	11.713	$\begin{gathered} 9005000 \\ 0 \end{gathered}$	0
61	108	30.78999334	-85.5391164	$\begin{gathered} 6100200 \\ 0 \end{gathered}$	0	$\begin{gathered} 6108000 \\ 0 \end{gathered}$	26.972
32	49	30.32979834	-82.75904205	$\begin{gathered} 3201000 \\ 0 \end{gathered}$	1.273	$\begin{gathered} 3202000 \\ 0 \end{gathered}$	0.107
52	8	30.72656657	-85.93770633	$\begin{gathered} 5201000 \\ 0 \end{gathered}$	6.462	$\begin{gathered} 5204000 \\ 0 \end{gathered}$	1.653
59	146	30.19056016	-84.21564504	$\begin{gathered} 5904000 \\ 0 \end{gathered}$	2.582	$\begin{gathered} 5911000 \\ 0 \end{gathered}$	12.211
26	1665	29.83100086	-82.60604133	$\begin{gathered} 2602006 \\ 4 \end{gathered}$	0	$\begin{gathered} 2604000 \\ 0 \\ \hline \end{gathered}$	1.707
76	502	29.7382904	-81.96287003	$\begin{gathered} 7608000 \\ 0 \end{gathered}$	5.702	$\begin{gathered} 7611000 \\ 0 \end{gathered}$	1.291
47	10	30.43668458	-85.1858034	$\begin{gathered} 4701000 \\ 0 \\ \hline \end{gathered}$	12.56	$\begin{gathered} 4704000 \\ 0 \\ \hline \end{gathered}$	15.795

39	23	30.02141332	-82.34506827	$\begin{gathered} 3905000 \\ 0 \\ \hline \end{gathered}$	13.85	$\begin{gathered} 3909000 \\ 0 \\ \hline \end{gathered}$	2.739
13	692	27.58828997	-82.4255159	$\begin{gathered} 1302000 \\ 0 \end{gathered}$	11.249	$\begin{gathered} 1306000 \\ 0 \end{gathered}$	0

Figure F-4. Rural Multilane, 4-Approach Signal

Table F-4. Rural Multilane, Four-Approach Signalized Intersections.

County ID	Node ID	Latitude Coordinates	Longitude Coordinates	Major Roadway ID	Major Road Milepost	2nd Roadway ID	2nd Road Milepost
60	61	30.72136916	-86.11537169	$\begin{gathered} 6001000 \\ 0 \end{gathered}$	17.019	$\begin{gathered} 6007000 \\ 0 \\ \hline \end{gathered}$	0
32	173	30.60260157	-83.09956952	$\begin{gathered} 3201000 \\ 0 \end{gathered}$	30.969	$\begin{gathered} 3207000 \\ 0 \end{gathered}$	11.669
57	882	30.56328993	-86.52809844	$\begin{gathered} 5705000 \\ 0 \end{gathered}$	4.071	$\begin{gathered} 5715000 \\ 0 \end{gathered}$	4.916
79	779	29.01121247	-81.06882972	$\begin{gathered} 7907000 \\ 0 \end{gathered}$	20.202	$\begin{gathered} 7912000 \\ 0 \end{gathered}$	17.59
30	31	29.60154041	-82.98183189	$\begin{gathered} 3001000 \\ 0 \end{gathered}$	25.838	$\begin{gathered} 3003000 \\ 0 \end{gathered}$	23.492
74	29	30.56367451	-81.82976498	$\begin{gathered} 7403000 \\ 0 \end{gathered}$	4.611	$\begin{gathered} 7404000 \\ 0 \end{gathered}$	15.637
34	135	29.38736623	-82.44727624	$\begin{gathered} 3401000 \\ 0 \end{gathered}$	34.918	$\begin{gathered} 3404000 \\ 0 \end{gathered}$	12.348
8	125	28.52321012	-82.30314285	8050000	6.117	8070000	0
51	1	29.81218705	-85.30351245	$\begin{gathered} 5101000 \\ 0 \end{gathered}$	2.11	$\begin{gathered} 5102000 \\ 0 \end{gathered}$	0
35	107	30.46940484	-83.41494928	$\begin{gathered} 3501000 \\ 0 \end{gathered}$	19.983	$\begin{gathered} 3504000 \\ 0 \end{gathered}$	0
26	345	29.64669812	-82.60663001	$\begin{gathered} 2603000 \\ 0 \end{gathered}$	13.606	$\begin{gathered} 2607000 \\ 0 \end{gathered}$	3.03
18	18	28.66489761	-82.11246686	$\begin{gathered} 1801000 \\ 0 \end{gathered}$	6.842	$\begin{gathered} 1806000 \\ 0 \end{gathered}$	10.252
8	93	28.50786583	-82.19528513	8070000	7.026	8120000	2.041
35	250	30.46941853	-83.41005561	$\begin{gathered} 3501000 \\ 0 \end{gathered}$	20.275	$\begin{gathered} 3506000 \\ 0 \end{gathered}$	6.483
26	134	29.71685438	-82.13980149	$\begin{gathered} 2606000 \\ 0 \\ \hline \end{gathered}$	20.308	$\begin{gathered} 2613000 \\ 0 \\ \hline \end{gathered}$	11.758
52	51	30.78810089	-85.67983048	$\begin{gathered} 5201000 \\ 0 \end{gathered}$	23.478	$\begin{gathered} 5203000 \\ 0 \end{gathered}$	3.075
34	278	29.4747054	-82.85962427	$\begin{gathered} 3405000 \\ 0 \end{gathered}$	35.655	$\begin{gathered} 3411000 \\ 0 \end{gathered}$	19.331
26	233	29.79371799	-82.49431915	$\begin{gathered} 2602000 \\ 0 \end{gathered}$	17.962	$\begin{gathered} 2611000 \\ 0 \end{gathered}$	0.485
50	281	30.62403939	-84.41529701	$\begin{gathered} 5004000 \\ 0 \end{gathered}$	0.839	$\begin{gathered} 5004002 \\ 7 \end{gathered}$	0.789
46	2	30.43560188	-85.42732948	$\begin{gathered} 4604000 \\ 0 \end{gathered}$	25.223	$\begin{gathered} 4605000 \\ 0 \end{gathered}$	23.449
34	181	29.49664248	-82.86829811	$\begin{gathered} 3401000 \\ 0 \\ \hline \end{gathered}$	7.394	$\begin{gathered} 3415000 \\ 0 \end{gathered}$	6.624
60	42	30.73409405	-86.14860242	$\begin{gathered} 6001000 \\ 0 \end{gathered}$	14.833	$\begin{gathered} 6006000 \\ 0 \end{gathered}$	0
9	10	27.20832022	-81.32866291	9010000	12.164	9060000	14.464
34	70	29.44759302	-82.64234355	$\begin{gathered} 3401000 \\ 0 \end{gathered}$	22.359	$\begin{gathered} 3407000 \\ 0 \end{gathered}$	32.932
78	262	29.7564846	-81.31286023	$\begin{gathered} 7801000 \\ 0 \end{gathered}$	7.415	$\begin{gathered} 7809000 \\ 0 \end{gathered}$	10.621

Figure F-5. Urban 3-Approach Signal

-

Table F-5. Urban, Three-Approach Signalized Intersections.

County ID	Node ID	Latitude Coordinates	Longitude Coordinates	Major Roadway ID	Major Road Milepost	2nd Roadway ID	2nd Road Milepost
15	510	27.80095288	-82.80106602	$\begin{gathered} 1510000 \\ 0 \\ \hline \end{gathered}$	7.955	$\begin{gathered} 1514000 \\ 0 \\ \hline \end{gathered}$	0
70	1272	28.21271738	-80.59785677	$\begin{gathered} 7000400 \\ 0 \\ \hline \end{gathered}$	4.59	$\begin{gathered} 7006000 \\ 0 \\ \hline \end{gathered}$	26.099
57	40	30.40410618	-86.61320681	$\begin{gathered} 5703000 \\ 0 \\ \hline \end{gathered}$	11.15	$\begin{gathered} 5711000 \\ 0 \end{gathered}$	0
87	702	25.86718095	-80.34004636	$\begin{gathered} 8703800 \\ 0 \\ \hline \end{gathered}$	0	$\begin{gathered} 8709000 \\ 0 \end{gathered}$	8.83
87	2923	25.87001373	-80.18557907	$\begin{gathered} 8703400 \\ 0 \end{gathered}$	0.94	$\begin{gathered} 8703800 \\ 0 \end{gathered}$	9.7
78	72	29.77069502	-81.25430523	$\begin{gathered} 7804000 \\ 0 \\ \hline \end{gathered}$	7.357	$\begin{gathered} 7809000 \\ 0 \\ \hline \end{gathered}$	14.485
55	118	30.4381211	-84.28063338	$\begin{gathered} 5504000 \\ 0 \end{gathered}$	11.703	$\begin{gathered} 5508000 \\ 0 \\ \hline \end{gathered}$	0
48	187	30.52019077	-87.1742609	$\begin{gathered} 4802000 \\ 0 \end{gathered}$	24.69	$\begin{gathered} 4803000 \\ 0 \end{gathered}$	5.471
91	7	27.19821575	-80.82952499	$\begin{gathered} 9101000 \\ 0 \\ \hline \end{gathered}$	4.781	$\begin{gathered} 9102000 \\ 0 \\ \hline \end{gathered}$	0
76	130	29.66848273	-81.65671557	$\begin{gathered} 7602000 \\ 0 \\ \hline \end{gathered}$	22.964	$\begin{gathered} 7603000 \\ 0 \\ \hline \end{gathered}$	1.064
70	726	28.55749148	-80.79783948	$\begin{gathered} 7002000 \\ 0 \\ \hline \end{gathered}$	35.699	$\begin{gathered} 7003000 \\ 0 \\ \hline \end{gathered}$	0
87	3508	25.82555391	-80.18692169	$\begin{gathered} 8703000 \\ 0 \end{gathered}$	14.554	$\begin{gathered} 8725000 \\ 0 \end{gathered}$	5.822
46	249	30.18344677	-85.7271848	$\begin{gathered} 4602000 \\ 0 \end{gathered}$	1.295	$\begin{gathered} 4614000 \\ 1 \\ \hline \end{gathered}$	0
72	2622	30.43976623	-81.76445908	$\begin{gathered} 7201800 \\ 0 \end{gathered}$	0	$\begin{gathered} 7208000 \\ 0 \\ \hline \end{gathered}$	10.299
93	169	26.46169689	-80.0583221	$\begin{gathered} 9303000 \\ 0 \\ \hline \end{gathered}$	9.18	$\begin{gathered} 9306000 \\ 0 \end{gathered}$	9.784
16	1762	28.00793978	-81.75134421	$\begin{gathered} 1612000 \\ 0 \end{gathered}$	1.38	$\begin{gathered} 1612100 \\ 0 \end{gathered}$	0.627
48	1333	30.51106998	-87.1853317	$\begin{gathered} 4800300 \\ 0 \end{gathered}$	7.281	$\begin{gathered} 4803000 \\ 0 \end{gathered}$	4.535
91	112	27.24648751	-80.80191122	$\begin{gathered} 9106000 \\ 0 \\ \hline \end{gathered}$	0	$\begin{gathered} 9107000 \\ 0 \\ \hline \end{gathered}$	11.297
58	36	30.62178487	-87.04359712	$\begin{gathered} 5801000 \\ 0 \end{gathered}$	11.621	$\begin{gathered} 5805000 \\ 0 \end{gathered}$	0
86	2924	26.23142405	-80.16558881	$\begin{gathered} 8603900 \\ 0 \end{gathered}$	2.482	$\begin{gathered} 8613000 \\ 0 \end{gathered}$	3.228
94	1283	27.49853872	-80.34540221	$\begin{gathered} 9400500 \\ 0 \end{gathered}$	6.168	$\begin{gathered} 9401000 \\ 0 \end{gathered}$	17.059
46	388	30.18939463	-85.6409384	$\begin{gathered} 4600100 \\ 0 \end{gathered}$	3.576	$\begin{gathered} 4604000 \\ 0 \end{gathered}$	2.644
70	520	28.00382802	-80.56329211	$\begin{gathered} 7001000 \\ 0 \end{gathered}$	11.406	$\begin{gathered} 7018000 \\ 0 \end{gathered}$	6.698
48	70	30.47336618	-87.30703813	$\begin{gathered} 4802000 \\ 0 \end{gathered}$	7.788	$\begin{gathered} 4819000 \\ 0 \end{gathered}$	0
87	6680	25.64689426	-80.33272145	$\begin{gathered} 8702000 \\ 0 \end{gathered}$	17.597	$\begin{gathered} 8704700 \\ 0 \end{gathered}$	0
86	1	26.00778315	-80.43261082	8604000	0	8606000	3.544

				0		0	
16	850	28.0585475	-81.78278836	$\begin{gathered} 1602000 \\ 0 \end{gathered}$	11.054	$\begin{gathered} 1614000 \\ 0 \end{gathered}$	0
70	5187	28.53245217	-80.81886802	$\begin{gathered} 7000100 \\ 0 \end{gathered}$	2.394	$\begin{gathered} 7000600 \\ 0 \\ \hline \end{gathered}$	6.797
72	631	30.28203587	-81.7552479	$\begin{gathered} 7201200 \\ 0 \end{gathered}$	0.83	$\begin{gathered} 7201700 \\ 0 \end{gathered}$	0
93	298	26.84091567	-80.19872386	$\begin{gathered} 9300100 \\ 0 \end{gathered}$	0	$\begin{gathered} 9331000 \\ 0 \end{gathered}$	13.521
70	575	28.09380899	-80.610154	$\begin{gathered} 7002000 \\ 0 \end{gathered}$	1.128	$\begin{gathered} 7002200 \\ 0 \end{gathered}$	40
16	1100	28.00273324	-81.6927137	$\begin{gathered} 1630000 \\ 0 \end{gathered}$	2.482	$\begin{gathered} 1630010 \\ 1 \end{gathered}$	1.377
94	64	27.45488187	-80.32720102	$\begin{gathered} 9401000 \\ 0 \end{gathered}$	13.847	$\begin{gathered} 9405000 \\ 0 \end{gathered}$	17.945
90	118	24.56990813	-81.75254651	$\begin{gathered} 9000300 \\ 0 \end{gathered}$	2.895	$\begin{gathered} 9001000 \\ 0 \end{gathered}$	3.927
75	168	28.47691287	-81.28529223	$\begin{gathered} 7508000 \\ 0 \end{gathered}$	9.974	$\begin{gathered} 7520000 \\ 0 \end{gathered}$	0
57	869	30.49700569	-86.55756446	$\begin{gathered} 5704000 \\ 0 \end{gathered}$	8.476	$\begin{gathered} 5715000 \\ 0 \end{gathered}$	0
72	1313	30.24418585	-81.60025239	$\begin{gathered} 7207000 \\ 0 \end{gathered}$	12.089	$\begin{gathered} 7229200 \\ 0 \end{gathered}$	0
13	1078	27.4682716	-82.69961534	$\begin{gathered} 1304000 \\ 0 \\ \hline \end{gathered}$	0	$\begin{gathered} 1308000 \\ 0 \\ \hline \end{gathered}$	6.666
29	674	30.18644821	-82.59686756	$\begin{gathered} 2900200 \\ 0 \end{gathered}$	3.471	$\begin{gathered} 2901000 \\ 0 \end{gathered}$	12.48
79	253	29.10784195	-80.97318814	$\begin{gathered} 7901000 \\ 0 \end{gathered}$	24.954	$\begin{gathered} 7919000 \\ 0 \end{gathered}$	0
55	1798	30.41926528	-84.35054404	$\begin{gathered} 5500210 \\ 0 \end{gathered}$	0.225	$\begin{gathered} 5516010 \\ 0 \end{gathered}$	0
79	623	29.22035938	-81.01123542	$\begin{gathered} 7908000 \\ 0 \\ \hline \end{gathered}$	1.059	$\begin{gathered} 7908000 \\ 1 \end{gathered}$	0.77
93	378	26.79818972	-80.05469975	$\begin{gathered} 9302000 \\ 0 \end{gathered}$	14.539	$\begin{gathered} 9304000 \\ 0 \end{gathered}$	0
36	954	29.21884812	-82.03357743	$\begin{gathered} 3608000 \\ 0 \end{gathered}$	7.217	$\begin{gathered} 3651800 \\ 0 \end{gathered}$	8.46
73	28	29.48098514	-81.12738217	$\begin{gathered} 7302000 \\ 0 \end{gathered}$	8.191	$\begin{gathered} 7303000 \\ 0 \\ \hline \end{gathered}$	4.017

Figure F-6. Urban 4-Approach Signal

Table F-6. Urban, Four-Approach Signalized Intersections.

County ID	Node ID	Latitude Coordinates	Longitude Coordinates	Major Roadway ID	Major Road Milepost	2nd Roadway ID	2nd Road Milepost
86	1226	25.99675392	-80.14269857	$\begin{gathered} 8601000 \\ 0 \\ \hline \end{gathered}$	1.532	$\begin{gathered} 8601800 \\ 0 \\ \hline \end{gathered}$	6.547
71	19	29.78574516	-82.03130198	$\begin{gathered} 7104000 \\ 0 \end{gathered}$	1.124	$\begin{gathered} 7111000 \\ 0 \end{gathered}$	6.245
87	931	25.89945589	-80.18644551	$\begin{gathered} 8700800 \\ 0 \\ \hline \end{gathered}$	8.637	$\begin{gathered} 8703400 \\ 0 \\ \hline \end{gathered}$	2.975
93	2763	26.68644907	-80.66781118	$\begin{gathered} 9313000 \\ 0 \end{gathered}$	0.29	$\begin{gathered} 9317000 \\ 0 \end{gathered}$	0.58
29	259	30.17886647	-82.66681826	$\begin{gathered} 2901000 \\ 0 \end{gathered}$	8.033	$\begin{gathered} 2909000 \\ 0 \end{gathered}$	11.348
75	207	28.524258	-81.33102639	$\begin{gathered} 7501200 \\ 0 \end{gathered}$	0	$\begin{gathered} 7508000 \\ 0 \end{gathered}$	15.851
94	115	27.41269032	-80.3990891	$\begin{gathered} 9400300 \\ 0 \end{gathered}$	0	$\begin{gathered} 9403000 \\ 0 \end{gathered}$	20.523
87	3013	25.84520819	-80.26618226	$\begin{gathered} 8708090 \\ 0 \\ \hline \end{gathered}$	34.939	$\begin{gathered} 8728100 \\ 0 \\ \hline \end{gathered}$	8.196
86	2350	26.12080536	-80.2524677	$\begin{gathered} 8600600 \\ 0 \\ \hline \end{gathered}$	0	$\begin{gathered} 8622000 \\ 0 \end{gathered}$	10.343
16	264	27.73368604	-81.57266653	$\begin{gathered} 1604000 \\ 0 \end{gathered}$	15.064	$\begin{gathered} 1617000 \\ 0 \end{gathered}$	6.851
86	2292	26.19378179	-80.25207264	$\begin{gathered} 8601400 \\ 0 \end{gathered}$	0	$\begin{gathered} 8622000 \\ 0 \end{gathered}$	15.573
72	733	30.28215366	-81.72598498	$\begin{gathered} 7201700 \\ 0 \end{gathered}$	1.751	$\begin{gathered} 7217000 \\ 0 \end{gathered}$	6.743
11	146	28.81222679	-81.91647092	$\begin{gathered} 1100200 \\ 0 \\ \hline \end{gathered}$	0	$\begin{gathered} 1101000 \\ 0 \end{gathered}$	2.365
55	242	30.46007975	-84.2279794	$\begin{gathered} 5500300 \\ 0 \end{gathered}$	7.876	$\begin{gathered} 5502000 \\ 0 \end{gathered}$	3.356
10	1776	27.99622318	-82.37309714	$\begin{gathered} 1003000 \\ 0 \end{gathered}$	4.772	$\begin{gathered} 1003010 \\ 2 \end{gathered}$	0
48	73	30.46110976	-87.30100514	$\begin{gathered} 4801200 \\ 0 \end{gathered}$	0	$\begin{gathered} 4802000 \\ 0 \end{gathered}$	8.702
70	2190	28.35696491	-80.70015812	$\begin{gathered} 7010000 \\ 0 \end{gathered}$	10.706	$\begin{gathered} 7014000 \\ 0 \end{gathered}$	0
10	247	27.98142041	-82.40161187	$\begin{gathered} 1033000 \\ 0 \end{gathered}$	0.911	$\begin{gathered} 1034000 \\ 0 \end{gathered}$	6.34
11	102	28.82642107	-81.88743244	$\begin{gathered} 1101004 \\ 7 \end{gathered}$	0	$\begin{gathered} 1104000 \\ 0 \end{gathered}$	4.472
72	1224	30.27009235	-81.75643091	$\begin{gathered} 7201200 \\ 0 \end{gathered}$	0	$\begin{gathered} 7229500 \\ 0 \end{gathered}$	0.831
15	2110	27.8646572	-82.63806091	$\begin{gathered} 1509000 \\ 0 \end{gathered}$	6.939	$\begin{gathered} 1524000 \\ 0 \end{gathered}$	3.376
75	6755	28.60899571	-81.28871055	$\begin{gathered} 7509000 \\ 0 \end{gathered}$	4.125	$\begin{gathered} 7520500 \\ 0 \end{gathered}$	0.336
79	616	29.21225402	-81.01935503	$\begin{gathered} 7908000 \\ 0 \end{gathered}$	0.23	$\begin{gathered} 7908000 \\ 1 \end{gathered}$	0
3	510	26.15482714	-81.68698443	3001000	6.464	3030001	16.205
16	845	28.05886194	-81.78866584	$\begin{gathered} 1602000 \\ 0 \end{gathered}$	10.695	$\begin{gathered} 1616000 \\ 0 \end{gathered}$	0
86	2675	26.3043419	-80.15252288	$\begin{gathered} 8601200 \\ 0 \\ \hline \end{gathered}$	0	$\begin{gathered} 8606500 \\ 0 \\ \hline \end{gathered}$	11.671

79	462	29.23247937	-81.05429148	$\begin{gathered} 7919000 \\ 0 \end{gathered}$	10.389	$\begin{gathered} 7919000 \\ 7 \end{gathered}$	0
75	2588	28.35739063	-81.49708471	$\begin{gathered} 7503500 \\ 1 \end{gathered}$	0.895	$\begin{gathered} 7503900 \\ 0 \end{gathered}$	2.034
13	1455	27.44729908	-82.5303865	$\begin{gathered} 1312100 \\ 0 \end{gathered}$	4.06	$\begin{gathered} 1316000 \\ 0 \end{gathered}$	1.001
87	1097	25.70732348	-80.28578117	$\begin{gathered} 8703000 \\ 0 \end{gathered}$	2.751	$\begin{gathered} 8706200 \\ 0 \end{gathered}$	0.217
48	245	30.45274756	-87.22053825	$\begin{gathered} 4800400 \\ 0 \\ \hline \end{gathered}$	9.647	$\begin{gathered} 4807000 \\ 0 \\ \hline \end{gathered}$	2.686
48	1384	30.47332135	-87.21222213	$\begin{gathered} 4800300 \\ 0 \end{gathered}$	4.025	$\begin{gathered} 4801200 \\ 0 \end{gathered}$	5.516
93	131	26.67573861	-80.05472321	$\begin{gathered} 9305000 \\ 0 \\ \hline \end{gathered}$	5.838	$\begin{gathered} 9312000 \\ 0 \end{gathered}$	20.812
55	304	30.43689382	-84.26180583	$\begin{gathered} 5500500 \\ 0 \end{gathered}$	0	$\begin{gathered} 5508000 \\ 0 \end{gathered}$	1.143
46	170	30.18980865	-85.67886087	$\begin{gathered} 4600100 \\ 0 \end{gathered}$	1.304	$\begin{gathered} 4611000 \\ 0 \end{gathered}$	1.554
10	295	27.99608541	-82.41404107	$\begin{gathered} 1000500 \\ 0 \\ \hline \end{gathered}$	2.845	$\begin{gathered} 1003000 \\ 0 \end{gathered}$	2.267
87	9017	25.92157718	-80.2130663	$\begin{gathered} 8714000 \\ 0 \end{gathered}$	10.812	$\begin{gathered} 8714000 \\ 1 \end{gathered}$	0.965
50	95	30.58802407	-84.59110644	$\begin{gathered} 5001000 \\ 0 \end{gathered}$	19.849	$\begin{gathered} \text { 5008000 } \\ 0 \end{gathered}$	15.389
86	2159	26.18845752	-80.15522851	$\begin{gathered} 8601400 \\ 0 \end{gathered}$	6.248	$\begin{gathered} 8606500 \\ 0 \end{gathered}$	3.57
50	108	30.5881648	-84.57577614	$\begin{gathered} 5001000 \\ 0 \end{gathered}$	20.763	$\begin{gathered} 5002000 \\ 0 \end{gathered}$	0
70	300	28.13894791	-80.58110946	$\begin{gathered} 7006000 \\ 0 \\ \hline \end{gathered}$	20.909	$\begin{gathered} 7012000 \\ 0 \end{gathered}$	8.398
57	250	30.44956461	-86.63852895	$\begin{gathered} 5700300 \\ 0 \end{gathered}$	0	$\begin{gathered} 5711000 \\ 0 \end{gathered}$	4.318
87	1132	25.73989797	-80.23796449	$\begin{gathered} 8703000 \\ 0 \\ \hline \end{gathered}$	6.534	$\begin{gathered} 8724000 \\ 0 \\ \hline \end{gathered}$	0
48	741	30.46670967	-87.24231083	$\begin{gathered} 4801200 \\ 0 \end{gathered}$	3.569	$\begin{gathered} 4804000 \\ 0 \end{gathered}$	3.543
11	1967	28.81000096	-81.73650127	$\begin{gathered} 1101000 \\ 0 \end{gathered}$	14.028	$\begin{gathered} 1124000 \\ 2 \end{gathered}$	0.038
88	165	27.74869381	-80.43564934	$\begin{gathered} \hline 8801000 \\ 0 \end{gathered}$	14.267	$\begin{gathered} 8805000 \\ 0 \end{gathered}$	5.879
48	1365	30.44749971	-87.212613	$\begin{gathered} 4800300 \\ 0 \end{gathered}$	2.211	$\begin{gathered} 4800500 \\ 0 \end{gathered}$	1.182
86	554	26.1661003	-80.15458198	$\begin{gathered} 8606500 \\ 0 \end{gathered}$	2.036	$\begin{gathered} 8609000 \\ 0 \end{gathered}$	6.352
75	5600	28.45025535	-81.40076457	$\begin{gathered} 7500200 \\ 0 \\ \hline \end{gathered}$	4.618	$\begin{gathered} 7501000 \\ 0 \\ \hline \end{gathered}$	7.062
86	115	26.09280097	-80.13658021	$\begin{gathered} 8601000 \\ 0 \end{gathered}$	8.286	$\begin{gathered} 8601000 \\ 1 \end{gathered}$	2.547
46	98	30.18953902	-85.64997022	$\begin{gathered} 4600100 \\ 0 \end{gathered}$	3.033	$\begin{gathered} 4606000 \\ 0 \end{gathered}$	2.212
75	6025	28.57832143	-81.41644207	$\begin{gathered} 7519000 \\ 0 \end{gathered}$	4.993	$\begin{gathered} 7525000 \\ 0 \end{gathered}$	8.44
78	298	29.89096332	-81.32465414	$\begin{gathered} 7801000 \\ 0 \end{gathered}$	16.758	$\begin{gathered} 7801002 \\ 7 \end{gathered}$	0
72	853	30.39100466	-81.67929115	$\begin{gathered} 7215000 \\ 0 \end{gathered}$	2.715	$\begin{gathered} 7229100 \\ 0 \end{gathered}$	9.812

70	1167	28.0786503	-80.62144767	$\begin{gathered} 7001200 \\ 0 \end{gathered}$	5.528	$\begin{gathered} 7005000 \\ 0 \end{gathered}$	14.993
86	569	26.16677511	-80.13170787	$\begin{gathered} 8609000 \\ 0 \end{gathered}$	7.775	$\begin{gathered} 8617000 \\ 0 \end{gathered}$	2.338
46	306	30.15882365	-85.66034475	$\begin{gathered} 4602000 \\ 0 \end{gathered}$	6.362	$\begin{gathered} 4604000 \\ 0 \end{gathered}$	0
77	256	28.70351349	-81.29128153	$\begin{gathered} 7707000 \\ 0 \end{gathered}$	2.543	$\begin{gathered} 7707000 \\ 2 \end{gathered}$	0
26	23	29.6520409	-82.31132038	$\begin{gathered} 2605000 \\ 0 \\ \hline \end{gathered}$	3.379	$\begin{gathered} 2607000 \\ 0 \end{gathered}$	21.167
29	83	30.18934085	-82.63705725	$\begin{gathered} 2901000 \\ 0 \end{gathered}$	10.055	$\begin{gathered} 2907000 \\ 0 \\ \hline \end{gathered}$	3.031
15	1132	27.77730589	-82.67952178	$\begin{gathered} 1501000 \\ 0 \\ \hline \end{gathered}$	2.51	$\begin{gathered} 1515000 \\ 0 \\ \hline \end{gathered}$	4.874
93	1057	26.61777838	-80.11355431	$\begin{gathered} 9307000 \\ 0 \end{gathered}$	20.359	$\begin{gathered} 9318000 \\ 0 \\ \hline \end{gathered}$	5.677
48	575	30.42120951	-87.31730691	$\begin{gathered} 4800400 \\ 0 \end{gathered}$	3.01	$\begin{gathered} 4811000 \\ 0 \end{gathered}$	7.989
15	1411	27.76256434	-82.73492133	$\begin{gathered} 1511000 \\ 0 \end{gathered}$	1.775	$\begin{gathered} 1523000 \\ 0 \end{gathered}$	0
76	441	29.65831235	-81.668453	$\begin{gathered} 7602000 \\ 0 \end{gathered}$	21.935	$\begin{gathered} 7611000 \\ 0 \end{gathered}$	20.583
87	1714	25.94253897	-80.20499399	$\begin{gathered} 8702600 \\ 0 \\ \hline \end{gathered}$	5.529	$\begin{gathered} 8714000 \\ 0 \end{gathered}$	12.604
79	936	29.05480025	-81.30432945	$\begin{gathered} 7904000 \\ 0 \end{gathered}$	15.172	$\begin{gathered} 7905000 \\ 0 \end{gathered}$	0
86	1014	26.18662334	-80.20365267	$\begin{gathered} 8601400 \\ 0 \end{gathered}$	3.22	$\begin{gathered} 8610000 \\ 0 \end{gathered}$	14.794
70	2166	28.55438717	-80.84673203	$\begin{gathered} 7000100 \\ 0 \end{gathered}$	0	$\begin{gathered} 7011000 \\ 0 \end{gathered}$	5.489
87	1059	25.66646779	-80.32361988	8702000	19.057	8704600	3.002
26	21	29.61443564	-82.34086216	$\begin{gathered} 2601000 \\ 0 \end{gathered}$	11.628	$\begin{gathered} 2605000 \\ 0 \end{gathered}$	0
87	2986	25.89977928	-80.17842686	$\begin{gathered} 8700800 \\ 0 \end{gathered}$	9.136	$\begin{gathered} 8719000 \\ 0 \end{gathered}$	1.394
87	929	25.89859884	-80.2028706	$\begin{gathered} 8700800 \\ 0 \end{gathered}$	7.614	$\begin{gathered} 8700800 \\ 1 \end{gathered}$	0
87	2615	25.77079679	-80.2879972	$\begin{gathered} 8705300 \\ 0 \end{gathered}$	3.018	$\begin{gathered} 8706200 \\ 0 \end{gathered}$	4.57
50	107	30.58816129	-84.57696884	$\begin{gathered} 5001000 \\ 0 \end{gathered}$	20.692	$\begin{gathered} 5014000 \\ 0 \end{gathered}$	0
87	2972	25.70108844	-80.3661752	$\begin{gathered} 8705500 \\ 0 \end{gathered}$	2.018	$\begin{gathered} 8707200 \\ 0 \end{gathered}$	2.022
10	3520	27.98154773	-82.50536987	$\begin{gathered} 1013000 \\ 0 \end{gathered}$	11.05	$\begin{gathered} 1034000 \\ 0 \end{gathered}$	0
86	1029	26.2354204	-80.20478409	$\begin{gathered} 8603900 \\ 0 \end{gathered}$	0	$\begin{gathered} 8610000 \\ 0 \end{gathered}$	18.132
75	6151	28.67299726	-81.49279924	$\begin{gathered} 7512000 \\ 0 \\ \hline \end{gathered}$	0.202	$\begin{gathered} 7512000 \\ 1 \\ \hline \end{gathered}$	0.348
10	250	27.99619324	-82.39353656	$\begin{gathered} 1003000 \\ 0 \\ \hline \end{gathered}$	3.522	$\begin{gathered} 1033000 \\ 0 \end{gathered}$	2.145
79	455	29.21970878	-81.04725519	$\begin{gathered} 7919000 \\ 0 \end{gathered}$	9.411	$\begin{gathered} 7922000 \\ 0 \end{gathered}$	0.99
72	1311	30.22074247	-81.58564814	$\begin{gathered} 7202800 \\ 0 \end{gathered}$	1.912	$\begin{gathered} 7207000 \\ 0 \end{gathered}$	10.244

48	113	30.42068002	-87.24125658	$\begin{gathered} 4802000 \\ 0 \end{gathered}$	13.473	$\begin{gathered} 4805000 \\ 0 \end{gathered}$	21.029
48	144	30.42307443	-87.20706814	$\begin{gathered} 4800300 \\ 0 \end{gathered}$	0.496	$\begin{gathered} 4802000 \\ 0 \end{gathered}$	15.535
57	271	30.46523303	-86.55581904	$\begin{gathered} 5704002 \\ 6 \end{gathered}$	0.819	$\begin{gathered} 5713000 \\ 0 \end{gathered}$	6.205
87	915	25.84076263	-80.28997295	$\begin{gathered} 8700200 \\ 0 \end{gathered}$	0.758	$\begin{gathered} 8708090 \\ 0 \end{gathered}$	33.208
16	912	28.10667982	-81.62310346	$\begin{gathered} 1602000 \\ 0 \end{gathered}$	22.46	$\begin{gathered} 1609000 \\ 0 \end{gathered}$	34.807
92	189	28.30455223	-81.40368407	$\begin{gathered} 9201000 \\ 0 \end{gathered}$	11.764	$\begin{gathered} 9203000 \\ 0 \end{gathered}$	0
70	664	28.35569796	-80.73255804	$\begin{gathered} 7002000 \\ 0 \\ \hline \end{gathered}$	20.999	$\begin{gathered} 7010000 \\ 0 \\ \hline \end{gathered}$	8.727
79	428	29.12758648	-81.00512341	$\begin{gathered} 7919000 \\ 0 \\ \hline \end{gathered}$	2.521	$\begin{gathered} 7923000 \\ 0 \end{gathered}$	2.382
48	1244	30.38076993	-87.30853058	$\begin{gathered} 4800400 \\ 0 \end{gathered}$	0	$\begin{gathered} 4805000 \\ 0 \end{gathered}$	15.354
86	2258	26.27238558	-80.25016582	$\begin{gathered} 8602800 \\ 0 \end{gathered}$	0	$\begin{gathered} 8622000 \\ 0 \end{gathered}$	21.003
12	1913	26.52817896	-81.85259087	$\begin{gathered} 1200400 \\ 0 \end{gathered}$	10.726	$\begin{gathered} 1201100 \\ 0 \end{gathered}$	3
79	2221	29.22243181	-81.04872684	$\begin{gathered} 7919000 \\ 0 \end{gathered}$	9.619	$\begin{gathered} 7919000 \\ 6 \end{gathered}$	0
14	51	28.21691191	-82.73735976	$\begin{gathered} 1403000 \\ 0 \end{gathered}$	3.028	$\begin{gathered} 1457000 \\ 0 \end{gathered}$	0
48	1518	30.49727638	-87.2550987	$\begin{gathered} 4801300 \\ 0 \end{gathered}$	0	$\begin{gathered} 4801300 \\ 1 \end{gathered}$	20.015
86	517	26.2744712	-80.15197846	$\begin{gathered} 8602800 \\ 0 \end{gathered}$	6.108	$\begin{gathered} 8606500 \\ 0 \end{gathered}$	9.612
87	2229	25.92609939	-80.15590089	$\begin{gathered} 8717000 \\ 0 \end{gathered}$	3.568	$\begin{gathered} 8719000 \\ 0 \end{gathered}$	3.767
16	25	27.75190626	-81.80147842	$\begin{gathered} 1603000 \\ 0 \end{gathered}$	7.575	$\begin{gathered} 1604000 \\ 0 \end{gathered}$	0
16	829	28.0576373	-81.81340474	$\begin{gathered} 1602000 \\ 0 \\ \hline \end{gathered}$	9.11	$\begin{gathered} 1612000 \\ 0 \end{gathered}$	7.125
79	214	29.02355579	-80.92635822	$\begin{gathered} 7901000 \\ 0 \end{gathered}$	18.176	$\begin{gathered} 7907000 \\ 1 \end{gathered}$	0.934
26	566	29.63646262	-82.33937188	$\begin{gathered} 2600400 \\ 0 \end{gathered}$	0.924	$\begin{gathered} 2601000 \\ 0 \end{gathered}$	13.125
75	975	28.59308524	-81.3649731	$\begin{gathered} 7500600 \\ 0 \end{gathered}$	1.095	$\begin{gathered} 7503000 \\ 0 \end{gathered}$	5.373
46	194	30.23034941	-85.88766243	$\begin{gathered} 4609000 \\ 0 \end{gathered}$	0.551	$\begin{gathered} 4616000 \\ 0 \end{gathered}$	6.087
87	2939	25.70230834	-80.334133	$\begin{gathered} 8704700 \\ 0 \end{gathered}$	3.911	$\begin{gathered} 8705500 \\ 0 \\ \hline \end{gathered}$	4.018
10	174	28.06931238	-82.4511433	$\begin{gathered} 1004000 \\ 0 \end{gathered}$	8.207	$\begin{gathered} 1035000 \\ 0 \\ \hline \end{gathered}$	0.499
87	1372	25.7503427	-80.23823119	$\begin{gathered} 8705400 \\ 0 \end{gathered}$	1.532	$\begin{gathered} 8724000 \\ 0 \end{gathered}$	0.715
86	538	26.16477953	-80.20326386	$\begin{gathered} 8609000 \\ 0 \end{gathered}$	3.323	$\begin{gathered} 8610000 \\ 0 \end{gathered}$	13.3
88	33	27.63968659	-80.39517183	$\begin{gathered} 8801000 \\ 0 \end{gathered}$	6.268	$\begin{gathered} 8806000 \\ 9 \\ \hline \end{gathered}$	0.114
87	1534	25.88283217	-80.24308024	$\begin{gathered} 8705200 \\ 0 \end{gathered}$	0	$\begin{gathered} 8724000 \\ 0 \end{gathered}$	9.853

86	327	26.10457395	-80.20143875	8610000 0	9.142	8621000 0	0
14	1676	28.20598148	-82.66612577	1457000 2	1.66	1457010 1	0.191
72	1146	30.28213156	-81.73036278	7201700 0	1.489	7229100 0	0.423
77	340	28.6609167	-81.3414777	7701000 0	1.748	708000 0	7.453
93	1579	26.65092453	-80.0880714	9300600 0	4.388	9301600 0	7.153
75	5539	28.54384645	-81.39730379	7501000 0	13.546	7503000 0	0
6	24	27.50017901	-81.79782332	6010000	11.136	6050000	16.604
48	159	30.42532773	-87.18356877	8801200 0	9.601	4802000 0	16.959
75	5040	28.5523869	-81.45647594	7505000 0	12.277	7527000 0	7.101
16	712	28.03857301	-81.94088465	1606000 0	11.687	1633100 0	0
17	42	27.09985642	-82.44427525	1701000 0	17.131	1702000 0	0

APPENDIX G: EXTRACTION OF INTERSECTION ATTRIBUTES FROM GOOGLE MAPS

The geographic coordinates found in the RCI were entered directly into Google Earth, allowing the program to focus on the intersection in question (see below).

Figure G-1. Overhead View, Google Earth.
Attributes such as left-turn only lanes, right-turn only lanes, and skew could easily be recorded using this view. Pedestrian activity was estimated by taking into account contributing factors such as crosswalks, sidewalks, retail, and residential buildings. Vehicle-pedestrian modification factors can also be found by counting the bus stops, schools, and alcohol sales establishments (Google Earth helpfully provides symbols specifically identifying bus stops and schools).

The program also allows the user to access a street view (seen below), that provides a driver's-eye vantage point.

Figure G-2. Street View, Google Earth.
This setting provides a view of other attributes required by the HSM, including lighting, red-light cameras, and traffic signals. Left-turn signal phasing was deduced from the shape of the signal boxes and number of approaching turn lanes.

Using the above methods, each factor needed for use in either an SPF or CMF equation was counted and added to the intersection attributes from the RCI.

